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Personalized medicine
Currently direct to consumers company are performing genotype test on markers 
associated to genetic traits, and and soon full genome sequencing will cost 
about 1000$.

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.

The future bioinformatics challenges  
for personalized medicine will be:

1. Processing Large-Scale Robust 
Genomic Data

2. Interpretation of the Functional 
Effect and the Impact of Genomic 
Variation

3. Integrating Systems and Data to 
Capture Complexity

4. Making it all clinically relevant



Single Nucleotide Variants
Single Nucleotide Variants (SNVs) 
is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the 
genome differs between members of the species. 

It is used to refer to Polymorphisms when the population frequency is ≥ 1% 

SNVs occur at any position and can be 
classified on the base of their locations. 


Coding SNVs can be subdivided into two 
groups: 
 


Synonymous: when single base substitutions do 
not cause a change in the resultant amino acid  

Non-synonymous or Single Amino Acid Variants 
(SAVs): when single base substitutions cause a 
change in the resultant amino acid. 

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


Effects of variants
It is important to understand the functional effect of Single Nucleotide 
Polymorphisms (SNPs) that are very common type of variations, but also the 
impact rare variants which have allele frequencies below than 1%    


Impact of coding variants

• Properties of amino acid residue substitution

• The evolutionary history of an amino acid position

• Sequence–function relationships

• Structure–function relationships


Impact of non-coding variants

• Transcription

• Pre-mRNA splicing

• MicroRNA binding

• Altering post-translational modification sites

Cline and Karchin (2011) Bioinformatics, 27; 441-448.



1000 Genomes
The 1000 Genomes Project aims to create the largest public catalogue of 
human variations and genotype data. Last version released the genotype of 
~2,500 individuals.  

variant calling. Finally, by initially analysing the data with multiple
genotype and variant calling algorithms and then generating a con-
sensus of these results, the project reduced genotyping error rates by
30–50% compared to those currently achievable using any one of the
methods alone (Supplementary Fig. 1 and Supplementary Table 12).
We also used local realignment to generate candidate alternative

haplotypes in the process of calling short (1–50-bp) indels15, as well as
local de novo assembly to resolve breakpoints for deletions greater
than 50 bp. The latter resulted in a doubling of the number of large
(.1 kb) structural variants delineatedwith base-pair resolution16. Full
genome de novo assembly was also performed (Supplementary
Information), resulting in the identification of 3.7megabases (Mb)
of novel sequence not matching the reference at a high threshold for
assembly quality and novelty. All novel sequence matched other
human and great ape sequences in the public databases.

Rates of variant discovery
In the trio project, with an average mapped sequence coverage of 423
per individual across six individuals and 2.3 gigabases (Gb) of accessible
genome, we identified 5.9 million SNPs, 650,000 short indels (of
1–50 bp in length), and over 14,000 larger structural variants. In the
low-coverage project, with average mapped coverage of 3.63 per indi-
vidual across 179 individuals (Supplementary Fig. 2) and 2.4Gb of
accessible genome, we identified 14.4 million SNPs, 1.3 million short
indels and over 20,000 larger structural variants. In the exon project,
with an average mapped sequence coverage of 563 per individual
across 697 individuals and a target of 1.4Mb, we identified 12,758
SNPs and 96 indels.
Experimental validation was used to estimate and control the FDR

fornovel variants (SupplementaryTable 3). The FDR for each complete
call set was controlled to be less than 5% for SNPs and short indels,
and less than 10% for structural variants. Because in an initial test

almost all of the sites that we called that were already in dbSNP were
validated (285 out of 286), in most subsequent validation experiments
we tested only novel variants and extrapolated to obtain the overall
FDR. This process will underestimate the true FDR if more SNPs listed
in dbSNP are false positives for some call sets. The FDR for novel
variants was 2.6% for trio SNPs, 10.9% for low-coverage SNPs, and
1.7% for low-coverage indels (Supplementary Information and Sup-
plementary Tables 3 and 4a, b).
Variation detected by the project is not evenly distributed across

the genome: certain regions, such as the human leukocyte antigen
(HLA) and subtelomeric regions, show high rates of variation,
whereas others, for example a 5-Mb gene-dense and highly conserved
region around 3p21, show very low levels of variation (Supplementary
Fig. 3a). At the chromosomal scale we see strong correlation between
different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity par-
ticular to types of structural variant, for example structural variants
resulting from non-allelic homologous recombination are apparently
enriched in the HLA and subtelomeric regions (Supplementary Fig.
3b, top).

Variant novelty
As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered dif-
fered substantially among populations, variant types and allele fre-
quencies (Fig. 1). Novel SNPs had a strong tendency to be found
only in one analysis panel (set of related populations; Fig. 1a). For
SNPs also present in dbSNP version 129 (the last release before 1000
Genomes Project data), only 25%were specific to a single low-coverage
analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel
whereas only 4%were found in all analysis panels. In the exon project,

Table 1 | Variants discovered by project, type, population and novelty
a Summary of project data including combined exon populations

Statistic

Low coverage Trios
Exon
(total)

Unionacross
projectsCEU YRI CHB1JPT Total CEU YRI Total

Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (3) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 2.43 Gb

(86%)
2.39 Gb
(85%)

2.41 Gb
(85%)

2.42 Gb
(86.0%)

2.26 Gb
(79%)

2.21 Gb
(78%)

2.24 Gb
(79%)

1.4 Mb NA

No. of SNPs (% novel) 7,943,827
(33%)

10,938,130
(47%)

6,273,441
(28%)

14,894,361
(54%)

3,646,764
(11%)

4,502,439
(23%)

5,907,699
(24%)

12,758
(70%)

15,275,256
(55%)

Mean variant SNP sites per individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075

(39%)
941,567

(52%)
666,639

(39%)
1,330,158

(57%)
411,611

(25%)
502,462

(37%)
682,148

(38%)
96

(74%)
1,480,877

(57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893

(60%)
6,593
(41%)

8,129
(50%)

11,248
(51%)

ND 22,025
(61%)

No. of genotyped deletions (% novel) ND ND ND 10,742
(57%)

ND ND 6,317
(48%)

ND 13,826
(58%)

No. of duplications (% novel) 259
(90%)

320
(90%)

280
(91%)

407
(89%)

187
(93%)

192
(91%)

256
(92%)

ND 501
(89%)

No. of mobile element insertions (% novel) 3,202
(79%)

3,105
(84%)

1,952
(76%)

4,775
(86%)

1,397
(68%)

1,846
(78%)

2,531
(78%)

ND 5,370
(87%)

No. of novel sequence insertions (% novel) ND ND ND ND 111
(96%)

66
(86%)

174
(93%)

ND 174
(93%)

b Exon populations separately

Statistic CEU TSI LWK YRI CHB CHD JPT

Samples 90 66 108 112 109 107 105
Total collected bases (Gb) 151 64 53 147 93 127 211
Mean mapped depth on target (3) 73 71 32 62 47 62 53
No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)
Variant SNP sites per individual 715 727 902 794 713 770 694
No. of indels (no. novel) 23 (10) 22 (11) 24 (16) 38 (21) 30 (16) 26 (13) 25 (11)
Variant indel sites per individual 3 3 3 3 3 2 3

NA, not applicable; ND, not determined.

ARTICLE RESEARCH
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1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.



SNVs and SAVs databases

http://www.ncbi.nlm.nih.gov/snp

dbSNP (Mar 2018) @ NCBI

Single Nucleotide Variants 

Homo sapiens        113,862,023 

Gallus gallus                15,104,956 

Zea mays                     14,672,946

http://www.expasy.ch/swissvar/

SwissVar (Oct 2018) @ ExPASy

Single Amino acid Variants 

Homo sapiens             76,608 

Disease                             29,529 

Polymorphisms                  39,779

Oct 2018

http://www.ncbi.nlm.nih.gov/snp
http://www.ncbi.nlm.nih.gov/snp
http://www.expasy.ch/swissvar/
http://www.expasy.ch/swissvar/


SNVs and Disease
Single Nucleotide Variants (SNVs) are 
the most common type of genetic 
variations in human accounting for more 
than 90% of sequence differences (1000 
Genome Project Consortium, 2012).


SNVs can also be responsible of genetic 
diseases (Ng and Henikoff, 2002; Bell, 
2004).   


nonsynonymous SNVs 

neutral SNVs

disease-related  
SNVs

the mutations are related to a 
Mendelian pathologies   

the mutations do not compromise 
the organism’s health  

dbSNP

SwissVar
Disease
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Sequence, Structure & Function
Genomic variants in sequence motifs could affect protein function. 

Mutation S362A of P53 affect the interaction with hydrolase USP7 and the 
deubiquitination of the protein.  

Nonsynonymous variants responsible 
for protein structural changes and 
cause loss of stability of the folded 
protein.

Mutation R411L removes the salt 
bridge stabilizing the structure of the 
IVD dehydrogenase. R411

Transcription  
activation

Interaction 
with DNA

Interaction 
with USP7

Interaction  
with WWOX

S362

Interaction 
with SH3



What predictions?

Given the large amount of available mutations what can we predict? 

 
Develop binary classifiers to predict the impact of mutations on:


• Protein Structure

• Protein Function

• Human Health


Structural changes upon mutation can be predicted using comparative 
modeling approaches.


Functional changes can be predicted from experimental data collected in 
PMD database (at http://www.genome.jp/dbget/)


Predicting the impact of mutation on human health is a more complex task  
that requires the integration of several source of information.

http://www.genome.jp/dbget/
http://www.genome.jp/dbget/


Simple Predictor
A simple method can be developed predicting the impact of mutations using 
BLOSUM62 substitution matrix.  
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BLOSUM62 Predictions

Area= 0.65

Q2 P[D] S[D] P[N] S[N] C

BLOSUM62 0.64 0.67 0.77 0.59 0.47 0.24

It is possible to plot the ROC curve of 
the predictions moving BLOSUM62 
threshold from -4 to 3.

We can calculate the Area Under the 
Curve and optimize the prediction 
threshold.

If we use a threshold equal to -1 the 
method result in 64% overall accuracy 
and 0.24 Matthews’ correlation 
coefficient 
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Accuracy measures
Overall Accuracy

€ 

Q2 =
TP +TN

TP + FN +TN + FP
!

Sensitivity
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C =
TP ×TN − FP × FN

(TP + FP) × (TP + FN ) × (TN + FP) × (TN + FN )
!Correlation



Receiving Operator Curve

!! !!

TPTN

FPFN
€ 

TPR =
TP

TP + FN
!True Positive Rate

€ 

FPR =
FP

FP +TN
!False Positive Rate

The Area Under the ROC Curve (AUC) is an 
accuracy measure that is 0.5 for completely 
random predictors and close to 1.0 for highly 
accurate predictors. 

FPR

TP
R

0

1

10

Baldi et al. (2000) Bioinformatics, 16:412-424



                                                1 [        .         .         .         .         :         .         .         . 80 
                  bits   E-value  N 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 1 P11686          400    1e-110  1 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 2 P15783          280     3e-74  1  80.6%        MDVGSKEVLMESPPDYTAVPGGRLLIPCCPVNIKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSITGPEAQQ    
 3 P21841          276     6e-73  1  78.7%        MDMSSKEVLMESPPDYSAGPRSQFRIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPETQK    
 4 P22398          270     3e-71  1  78.2%        MDMGSKEALMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEVQQ    
 5 Q1XFL5          268     1e-70  1  80.2%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 6 UPI0000E219B8   261     1e-68  1  89.4%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 7 UPI00005A47C8   259     6e-68  1  78.2%        MDVGSKEVLIESPpdYSAAPRGRLGIPCFPSSLKRLLIIVVVIVLVVVVIVGALLMGLHMSQKHTEMVLEMSMGGPEAQQ    
 8 Q3MSM1          206     8e-52  1  83.4%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 9 Q95M82           85     3e-15  1  82.4%        -------------------------------------------------------------------VLEMSIGGPEAPQ    
10 UPI000155C160    84     4e-15  1  48.9%        --------------------------------------------------------------------------------    
11 UPI0001555957    82     1e-14  1  83.6%        ------KVRADSPPDYSVAPRGRLGIPCCPFHLKRLLIIVVVVVLIVVVVLGALLMGLHMSQKHTEM-------------    
12 B3DM51           81     4e-14  1  34.8%        ----------------------------------------------------------HMSQKHTETIFQMSL-----QD    

Conserved or not?
In positions 66 the Glutamic acid is highly conserved Asparagine in position 138 
is mutated Threonine or Alanine

.....

.....   

                                               81          .         1         .         .         .         .         :         . 160
                  bits   E-value  N 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 1 P11686          400    1e-110  1 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 2 P15783          280     3e-74  1  80.6%        RLALSERVGTTATFSIGSTGTVVYDYQRLLIAYKPAPGTCCYIMKMAPQNIPSLEALTRKLQNF------QAKPQVPSSK    
 3 P21841(Mouse)   276     6e-73  1  78.7%        RLAPSERADTIATFSIGSTGIVVYDYQRLLTAYKPAPGTYCYIMKMAPESIPSLEAFARKLQNF------RAKPSTPTSK    
 4 P22398          270     3e-71  1  78.2%        RLALSEWAGTTATFPIGSTGIVTCDYQRLLIAYKPAPGTCCYLMKMAPDSIPSLEALARK---------FQANPAEPPTQ    
 5 Q1XFL5          268     1e-70  1  80.2%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQV--SVQAKPSTPTSK    
 6 UPI0000E219B8   261     1e-68  1  89.4%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALTRKVQNFQGQWKPQGERKRPGKR    
 7 UPI00005A47C8   259     6e-68  1  78.2%        RLALQERVGTTATFSIGSTGIVVYDYQRLLIAYKPAPGTCCYIMKMTPENIPSLEALTRKFQDFQV------KPAVSTSK    
 8 Q3MSM1          206     8e-52  1  83.4%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQ---------------    
 9 Q95M82           85     3e-15  1  82.4%        RLALRGRADTTATFSIGSTGIVVYDYQRLLIAYKPAPG------------------------------------------    
10 UPI000155C160    84     4e-15  1  48.9%        ---------------------------RLLIAYQPSPGATCYVTKMAPENIPSLDAITRE---FQ---SYQAKPSMPATK    
11 UPI0001555957    82     1e-14  1  83.6%        --------------------------------------------------------------------------------    
12 B3DM51           81     4e-14  1  34.8%        GSSTGAHGTGVATfgINSSASVVYDYSKLLIGTRPRPGHACYITRMDPEQVQSLETIAESV----------------LSK    



Sequence profile
The protein sequence profile is calculated running BLAST on the UniRef90 dataset and 
selecting only the hits with e-value < 10-9.  


The frequency distributions of the wild-type residues for disease-related and neutral variants 
are significantly different (KS p-value=0). 
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Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.



Machine learning
• Computational approach to build models based on the analysis of 

empirical data.

• Machine learning algorithms are suitable to address problems for which 
analytic solution does not exists and large amount of data are available.

• They are implemented selecting a representative set of data that are used 
in a training step and then validated on a test set with data “not seen” 
during the training. 

• Most popular machine learning approaches are in computational biology 
are Neural Networks, Support Vector Machines and Random Forest. 



Binary classifiers
• Support Vector Machine (SVM): Maps positive and negative training 

examples to a high-dimensional space in which they can be distinguished 
from each other. 

• Artificial Neural Network (ANN): multi-layer network of nodes, including 
input features, outputs, and one or more hidden layers. Weights of input 
and output edges connecting nodes are adjusted to maximize prediction 
accuracy. 

• Random Forest (RF): Trains an “ensemble” of decision trees to distinguish 
positive from negative training examples, utilizing a random set of input 
features. 

• Naïve Bayes Classifiers: Probabilistic classifier that treats each feature as 
independent of the others; parameters are adjusted to maximize the 
probability of impact for positive examples and minimize probability for 
negative examples.



Hybrid method structure

Protein Sequence
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Hybrid Method is based on a decision tree with  SVM-Sequence coupled to 
SVM-Profile. Tested on more than 21,000 variants our method reaches 74% 
of accuracy and 0.46 correlation coefficient. 

Capriotti et al. (2006) Bioinformatics, 22; 2729-2734.



Classification results

  Q2 P[D] Q[D] P[N] Q[N] C

SVM-Sequence 0.70 0.71 0.84 0.65 0.46 0.34

SVM-Profile 0.70 0.74 0.49 0.68 0.86 0.39

HybridMeth 0.74 0.80 0.76 0.65 0.70 0.46

SVM–Sequence is more accurate in the prediction of disease related mutations and  
SVM-Profile is more accurate in the prediction of neutral polymorphism.  

Both methods have the same Q2 level.

D = Disease related  N = Neutral

The Hybrid Method have higher accuracy than the previous two methods 
increasing the accuracy up to 74% and the correlation coefficient up to 0.46.

http://snps.biofold.org/phd-snp

http://snps.biofold.org/phd-snp
http://snps.biofold.org/phd-snp


In genetics, the Ka/Ks ratio is an indicator of selective pressure acting on a 
protein-coding gene. 


It is calculated as the ratio of the number of nonsynonymous substitutions per 
non-synonymous site (Ka), to the number of synonymous substitutions per 
synonymous site (Ks), in a given period of time.


Homologous genes with: 


• Ka/Ks ratio >> 1 (positive selection):  mutations must be advantageous. 

• Ka/Ks ratio  ~  1 (neutral selection):    advantageous ~ disadvantageous

• Ka/Ks ratio << 0 (negative selection): mutations are disadvantageous


The ratio, also known as ω or dN/dS, can be calculated at gene and site levels.

Selective pressure

from Wikipedia



We carried out a similar analysis 
on the dataset extracted from 
SwissProt and we found a 
statistically significant association 
between high selective pressures 
and disease in contrast to low 
selective pressures and neutral 
polymorphic variants in human. 

In a previous work performed on 40 human disease genes, has been demonstrated that 
residues evolving under strong selective pressures (ω<0.1) are significantly associated with 
human disease (Arbiza et al. JMB, 2006). 

The omega values

other hand, residues that are not associated with major functional
roles of the protein may be changing under neutral evolution and
consequently not necessarily found in association with disease.
Accordingly, we hypothesized that nsSNPs from coding regions of
the genome that affect human health may evolve more frequently
under strong selective pressure (i.e., or0.1) [Arbiza et al., 2006].
Using a large-scale testing set, we have found a statistically
significant association in humans between high selective pressures
and disease, in contrast to low selective pressures and neutral
polymorphic variants (Fig. 1). Disease-related protein variants and
polymorphisms show significantly different distributions. The
median o values for disease-related and neutral polymorphisms
variants are 0.068 and 0.14, respectively. Therefore, the disease-
related median value is 0.072 lower than that for polymorphisms.
This difference, although small, is very significant given a much
larger distribution for o values of polymorphisms (P-value of
2.2 ! 10–16). This result indicates that o values smaller than 0.1
are more frequently associated to disease than to polymorphisms.

Protein Sequence and Pro¢le-Based Classi¢ers

The Seq classifier, which solely includes information about the
target sequence, results in an average overall accuracy (Q2) of
0.73, correctly predicting 72% of the disease associated mutations
and 74% of the polymorphisms in the SP-Dec05 dataset (Table 2).
The correlation coefficient (C) is 0.43 and the area under the
curve (AUC) is 0.81 (Table 2). This classifier can be considered
the base line reference to assess the increment in accuracy as
evolutionary information is added during training. The accuracy of

SeqProf for predicting disease-related mutations compared to the
Seq classifier increases from 72% to 80% with a final correlation of
0.52. This increment is also reflected in a larger AUC of 0.85 and
the percentage of true-positive rate (TPR), which increases 7%
points with respect Seq at the false-positive rate (FPR) of 5%
(Fig. 2). The SeqProf method results in a higher accuracy than
using the ratio of mutated residue alone calculated from the
sequence profile. This shows that the introduction of sequence
information with profile-based information improves the quality of
the predictions (Fig. 2A). Thus, the results presented here are in

FIGURE 1. x distribution for disease and polymorphism protein
variants in the SP-Dec05 dataset.The box-plot shows the upper
and lower quartiles (box), the interquartile range (dashed verti-
cal lines), and the median (horizontal bold line) values for
disease-related and polymorphism protein variants (0.068 and
0.14, respectively). For visual inspection, a dashed horizontal
line in gray indicates x value of 0.1.

TABLE 2. Accuracy of the Classi¢ersOver the SP-Dec05 Dataset

Q2 Q (disease) Q (neutral) C AUC

Seq 0.73 0.72 0.74 0.43 0.81
SeqProf 0.78 0.80 0.74 0.52 0.85
SeqCod 0.79 0.82 0.74 0.53 0.86
SeqProfCod 0.82 0.84 0.77 0.59 0.88

FIGURE 2. Receiver operating characteristic (ROC) curves. The
area under the ROC curve represents the probability of correct
classi¢cationover thewhole rangeof cuto¡s.This area is usually
taken to be an important index because it provides a singlemea-
sure of overall accuracy that is not dependent upon a particular
feature threshold. A: Comparison of individual input scores x
and ratio of mutated residue against SVM trained SeqCod and
SeqProf. B: Comparison of our four SVM-based methods Seq,
SeqCod, SeqProf, and SeqProfCod.

HUMANMUTATION 29(1),198^204,2008 201

Human Mutation DOI 10.1002/humu

Capriotti et al. (2008) Human Mutation,  29: 198-204.



SeqProfCod has higher accuracy than the previous two methods increasing the 
accuracy up to 82% and the correlation coefficient to 0.59.

Q2 P[D] Q[D] P[N] Q[N] C

SeqProfCod 0.82 0.88 0.84 0.68 0.76 0.59

Fr
ac

tio
n

Area SeqProfCod = 0.88

Q2: Overall Accuracy C: Correlation Coefficient  DB:  Fraction of database that are predicted with a reliability ≥ the given threshold

Omega-based method



Gene Ontology
The Gene Ontology project is a major bioinformatics 
initiative with the aim of standardizing the 
representation of gene and gene product attributes 
across species and databases. The project provides 
a controlled vocabulary of terms for describing gene 
product characteristics and gene product 
annotation data. 

The ontology is represented by a direct acyclic graph covers three domains; 


• cellular component, the parts of a cell or its extracellular environment; 


• molecular function, the elemental activities of a gene product at the molecular level, such as 
binding or catalysis


• biological process, operations or sets of molecular events with a defined beginning and end, 
pertinent to the functioning of integrated living units: cells,tissues, organs and organisms.

http://www.geneontology.org/

http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org
http://www.geneontology.org


Prediction features
C48W
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Protein
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GO space
GO:X
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GO:T

Sequence information is encoded in 2 vectors 
each one composed by 20 elements. The first 
vector encodes for the mutation and the 
second one for the sequence environment  

Protein sequence profile information derived 
from a multiple sequence alignment. It is 
encoded in a 5 elements vector corresponding 
to different features general and local features

The GO information are encoded in a 2 elements 
vector corresponding to the number unique of 
GO terms associated to the protein sequences 
and the sum of the logarithm of the total number 
of disease-related and neutral variants for each 
GO term.



SNPs&GO performance
SNPs&GO results in better performance with respect to previously developed methods. 

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0.71 0.76 0.75 0.63 0.64 0.39 58

SIFT 0.76 0.75 0.76 0.77 0.75 0.52 93

PANTHER 0.74 0.77 0.73 0.71 0.76 0.48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Disease related  N = Neutral DB= 33672 nsSNVs
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Calabrese et al. (2009) Human Mutation 30, 1237-1244.



SwissVar data

SwissVar (October 2009)

• Disease variants: 22,771

• Neutral variants: 34,258

• Unclassified variants: 2,269

• Total: 59,298 

• Disease-related mutations not clearly annotated are removed.


• Mutations related to more than one disease are considered only once.


Training set 
After this filter we collected 17,993 Disease mutations from 1,424 proteins

that are balanced with the same number of neutral polymorphisms.




Protein structure data
The mapping of SwissVar mutations data on the structures available on the PDB is a 
difficult task. The main problems for this task are:


• incomplete PDB structures 

• differences between Swiss-Prot protein sequence and PDB sequence

• different residue numeration


The mapping procedure is performed using a pre-filtered list of correspondences 
between Swiss-Prot and PDB.


All Swiss-Prot/PDB pairs in the list are aligned using BLAST. To have a good overlap 
between sequence and structure I filtered the list of alignments removing those:


• with ≥ 1 gaps

• sequence identity < 100%

• shorter than 40 residues


If one mutation maps on more than one PDB the one with lower resolution is selected   


 



3D Structure Dataset
After the mapping procedure the final dataset of mutations with known 3D structure is 
composed by

  


• Disease variants: 3,342

• Neutral variants: 1,644

• Total: 4,986 

from 784 chains from 770 structures (584 X-ray, 92 NMR and 94 models). 
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Structure environment
There is a significant difference (p-value KS < 0.001) between the distributions of 
the relative Accessible Solvent Area for disease-related and neutral variants.  
Their mean values are respectively 20.6 and 35.7.



Analysis of the 3D interactions
Using the whole set of SAVs with known structure, we calculate  the log odd score of 
the ratio between the frequencies of the interaction between residue i and j for 
disease-related and neural variants. 
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The structure-based method
The method takes in to account 5 different types of information encoded in a 52 elements 
vector. The input features are: mutation data; structure environment, sequence profile and 
functional score based on GO terms.  
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Sequence vs structure
The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation 
coefficient increases of 0.06. If 10% of FPR are accepted the TPR increases of 7%.   

Q2 P[D] S[D] P[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GO3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92

SNPs&GO
SNPs&GO3d



Accuracy vs Accessibility
The predictions are more accurate for mutations occurring in buried region (0-30%). Mutations 
of exposed residues results in lower accuracy.


10 20 30 40 50 60 70 80 90 100
Relative Solvent Accessible Area 
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C
AUC
DB[D]
DB[N]



Prediction example
Damaging missing Cys-Cys interaction in the Glycosylasparaginase.  The mutation 
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179. 
This SAP is responsible for Aspartylglucosaminuria. 

1APY: Chain A, Res: 2.0 Å

C163

C179

C163



SNPs&GO web server

http://snps.biofold.org/snps-and-go
Capriotti et al. (2013). BMC Genomics. 14 (S3), S6.  
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SAVs Predictors
Many predictor of the effect of SAVs are available. They mainly use information from 
multiple sequence alignment to predict the effect of a given mutation. In his study we 
consider


• PhD-SNP: Support Vector Machine-based method using sequence and profile 
information (Capriotti et al. 2006).


• PANTHER: Hidden Markov Model-based method using a HMM library of protein 
families (Thomas and Kejariwal 2004).


• SNAP: Neural network based method to predict the functional effect of single poit 
mutations (Bromberg et al. 2008).


• SIFT: Probabilistic method based on the analysis of multiple sequence alignments 
(Ng and Henikoff 2003).



Predictors Accuracy
The accuracy of each predictor has been tested on a set of 35,986 mutations equally 
distributed between disease-related and neutral polymorphisms. PhD-SNP results in 
better accuracy but is the only one optimized using a cross-validation procedure.

SNAP shows lowest accuracy but it has been developed for a different task. 

Q2 P[D] S[D] P[N] S[N] C PM

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 100

PANTHER 0.74 0.79 0.73 0.69 0.74 0.48 74

SNAP 0.64 0.59 0.90 0.79 0.38 0.33 100

SIFT 0.70 0.74 0.64 0.68 0.76 0.41 92
DB:  Neutral 17883 and Disease 17883 



SAVs Predictors
The higher correlation coefficient is between PANTHER and SIFT predictions. SNAP 
shows low correlation with PhD-SNP and PANTHER but higher correlation with SIFT 
which input is included in SNAP

PhD-SNP PANTHER SNAP SIFT

PhD-SNP - 0.76 0.64 0.78

PANTHER 0.51 - 0.67 0.79

SNAP 0.37 0.40 - 0.69

SIFT 0.55 0.58 0.48 -

DB:  Neutral 17993 and Disease 17993 

C
O



Predictors tree
Using the prediction similarity we can build the predictors tree
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Prediction Analysis
The accuracy of the predictions has been evaluated considering three different 
subset


• Consensus: all the predictions returned by the methods are in agreement.

• Tie: equal number of methods predicting disease and polymorphism 

• Majority: One of the two possible classes is predominant    

Q2 P[D] S[D] P[N] S[N] C AUC %DB

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 0.84 100

Consensus 0.87 0.87 0.92 0.87 0.79 0.73 0.89 46

Majority 0.70 0.67 0.56 0.72 0.80 0.37 0.82 40

Tie 0.61 0.51 0.43 0.66 0.73 0.16 0.67 14



Consensus subset
The distributions of the wild-type and new residues frequencies and CI for 
disease-related variants and polymorphisms on the Consensus subset have 
very little overlap.
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The distributions of the wild-type and new residues frequencies and CI for 
disease-related variants and polymorphisms on the Tie subset have almost 
complete overlap.
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The distributions of the wild-type and new residues frequencies and CI 
for disease-related and polymorphism on the Majority subset are in an 
intermediate situation with respect to the previous cases.



Meta-SNP
The Meta-SNP is a RF-based meta predictor that takes in input * input features from 
the output of PhD-SNP, PANTHER, SNAP and SIFT.

The output of the methods can be analyzed dividing the dataset  in consensus 
predictions (all the methods in agree), tie predictions (same number of disease and 
non-disease predictions) and other predictions  (the remaining cases) .

RBF Kernel

Output

SIFT
Score

Random Forest

SNAP

NNout

PANTHER
P[D]

PhD-SNP

O[D] Fwt Fm N CI

http://snps.biofold.org/meta-snp

http://snps.biofold.org/meta-snp
http://snps.biofold.org/meta-snp


Meta-SNP accuracy
The Meta-Pred method results in better accuracy with respect to the PhD-SNP. 

Q2 P[D] S[D] P[N] S[N] C AUC %DB
PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 0.84 100

Meta-SNP 0.79 0.80 0.79 0.79 0.80 0.59 0.87 100
Consensus 0.87 0.88 0.92 0.87 0.80 0.73 0.91 46

Majority 0.75 0.72 0.64 0.76 0.82 0.47 0.82 40
Tie 0.69 0.62 0.57 0.73 0.76 0.34 0.75 14

DB:  Neutral 17993 and Disease 17993 
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Testing Meta-SNP
Performances of Meta-Pred on the test set of 972 variants from 577 proteins

Q2 P[D] S[D] P[N] S[N] C

Meta-SNP 0.79 0.79 0.80 0.80 0.79 0.59

PhD-SNP 0.77 0.78 0.77 0.77 0.78 0.55
DB:  Neutral 486 and Disease 486 
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Capriotti et al. (2013). BMC Genomics. 14 (S3), In press.



Whole-genome predictions
Most of the genetic variants occur in non-coding region that represents >98% 
of the whole genome.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M*

Predict the effect of SNVs in non-coding region is a challenging task because 
conservation is more difficult to estimate.


Sequence alignment is more complicated for sequences from non-coding regions.  



PhyloP100 score
Conservation analysis based on the pre-calculated score available at the UCSC 
revealed a significant difference between the distribution of the PhyloP100 
scores in Pathogenic and Benign SNVs.
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PhD-SNPg
PhD-SNPg is a simple method that takes in input 35 sequence-based features 
from a window of 5 nucleotides around the mutated position. 

Method

PhyloPSequence

25-element

Gradient  
Boosting

Probability
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http://snps.biofold.org/phd-snpg/ 
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Benchmarking  
PhD-SNPg has been tested in cross-validation on a set of 35,802 SNVs and on a blind 
set of 1,408 variants recently annotated.
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PhD-SNPg 0.861 0.774 0.884 0.925 0.847 0.715 0.884 0.924

Coding 0.849 0.671 0.845 0.938 0.850 0.651 0.892 0.908

Non-Coding 0.876 0.855 0.911 0.901 0.839 0.753 0.869 0.930

Capriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.



CAGI experiments
The Critical Assessment of Genome Interpretation  is a community experiment to 
objectively assess computational methods for predicting the phenotypic impacts of 
genomic variation.

https://genomeinterpretation.org/

https://genomeinterpretation.org
https://genomeinterpretation.org


The CAGI P16INK challenge

Challenge: Predict how protein variants in p16 protein impact its ability to 
block cell proliferation.

SNPs&GO among the best methods to 
blindly predict the change in cell 
proliferation associated to mutations 
on P16INK (~70% accurate predictions). 

The Critical Assessment of Genome Interpretation (CAGI) is a community 
experiment to objectively assess computational methods for predicting 
the phenotypic impacts of genomic variation.



SNPs&GO prediction

Variant Prediction Real ∆ %WT %MUT
G23R 0.932 0.918 0.014 84 0
G23S 0.923 0.693 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 0.367 84 2
G23C 0.946 0.866 0.080 84 0
G35E 0.590 0.600 0.010 12 14
G35W 0.841 0.862 0.021 12 0
G35R 0.618 0.537 0.081 12 4
L65P 0.878 0.664 0.214 15 1
L94P 0.979 0.939 0.040 56 0

Proliferation rates have been predicted using the raw output of SNPs&GO without any fitting



Cancer is complex disorder characterized by high level of mutation rate.  

The complexity of cancer

Mutations can be classified in germline and somatic whether they are inherited 
from parents or the result of error in DNA replication. 


 
Another classification is between driver and passenger mutations whether they 
provide selective advantage with respect to normal cells increasing their 
proliferation rate or not.




Hallmarks of cancer

Hanahan and Weinberg. Cell 2011, 144:646

The six hallmarks of cancer - distinctive and complementary capabilities that 
enable tumor growth and metastatic dissemination.



Oncogene vs Suppressor
Oncogenes have highly recurrent mutations, Tumor suppressors have sparse variants. 

Vogelstein et al. Science 2013, 339:1546



Main challenges

• Detection of recurrent somatic mutations 
and cancer driver genes; 


• Prediction of driver variants and their 
functional impact; 


• Estimate the impact of multiple variants 
at network and pathway level; 


• Differentiate subclonal populations and 
their variation pattern.   

Computational methods for cancer genome interpretation have been developed to 
address the following issues:

Raphael et al. Genome Medicine 2014, 6:5



How data looks like?
Variant Calling File (VCF) with germline and somatic variants

##fileformat=VCFv4.1 
##tcgaversion=1.1
##reference=<ID=hg19,source=.>
##phasing=none
##geneAnno=none
##INFO=<ID=VT,Number=1,Type=String,Description="Variant type, can be SNP, INS or DEL">
##INFO=<ID=VLS,Number=1,Type=Integer,Description="Final validation status relative to non-adjacent Normal, ......”>
##FILTER=<ID=CA,Description="Fail Carnac (Tumor and normal coverage, tumor variant count, mapping quality, ......”>
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read depth at this position in the sample">
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Depth of reads supporting alleles 0/1/2/3...">
##FORMAT=<ID=BQ,Number=.,Type=Integer,Description="Average base quality for reads supporting alleles">
##FORMAT=<ID=SS,Number=1,Type=Integer,Description="Variant status relative to non-adjacent Normal,0=wildtype, ......">
##FORMAT=<ID=SSC,Number=1,Type=Integer,Description="Somatic score between 0 and 255">
##FORMAT=<ID=MQ60,Number=1,Type=Integer,Description="Number of reads (mapping quality=60) supporting variant">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL   PRIMARY
1 10048 . C CCT . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:66:.,0:.:0:.:0   0/1:32:.,2:.:2:.:0
1 10078 . CT C . CA VT=DEL;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0:.:0:.:0   0/1:13:.,2:.:2:.:0
1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:57:.,0:.:0:.:0   0/1:22:.,2:.:2:.:0 
. . . . .
. . . . .
1 900505 . G C . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81  0/1:210:.,113:24:1:.:100
. . . . .
. . . . .
1 1991007 . G T . PASS VT=SNP;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:222:.,1:2:0:.:1   0/1:88:.,41:25:2:50:34
. . . . .



The TCGA data
The Cancer Genome Atlas Consortium 

TCGA data (https://portal.gdc.cancer.gov/)

• 33 cancer projects (~11,300 cases) 

• BAM files available



The ICGC data portal
The International Cancer Genome Consortium

ICGC (https://dcc.icgc.org/) 

• 20,487 cancer patients 

• 84 cancer types in 22 primary sites for which sequencing data are available

• 77.4 million simple somatic mutations. 



Somatic Mutations
Number of somatic mutations per sample vary significantly across cancer types 



Driver vs Passenger  
Number of recurrent mutations decrease exponentially. 


On average a small fraction of variants a present in the majority of the samples.


Selecting mutations that are repeated at least twice we filter out ~98% mutations 
and are still able to recover ~96% of the patients 

Tian R, Basu M, Capriotti E. BMC Genomics 2015
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The Cancer Tree
The analysis of recurrent somatic mutations can be used to define 

similarities across cancer types.
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Recurrent variations

Raphael et al. Genome Medicine 2014, 6:5

Recurrent mutations that are found in 
more samples than would be expected by

chance are good candidates for driver 
mutations.


To identify such recurrent mutations, a 
statistical test is performed which usually 
collapses all the non-synonymous 
mutations in a gene.


Identification of recurrent mutations in 
predefined groups such as pathways and 
protein-protein interaction networks and  
de novo identification of combinations, 
without relying on a priori definition.



Genes implicated in cancer should have high mutation rate 

The main idea

In comparison to normal, tumor cells should have higher occurrence of functional 
mutations in genes involved in the insurgence and progression of the disease.

Problem: 

How can we select mutations with functional impact?

Average number of variants	 	 	 	 	 	 	  ~3,000,000

Average exome variants	 	 	 	 	 	        	       ~23,000

Average nonsynonymous single nucleotide variants	           	        	       ~10,000

Average rare (MAF≤0.5%) nonsynonymous single nucleotide variants	            ~300

The 1000 Genomes Project (2010). Nature. 467; 1062-1073.



Rare variants are more likely to be associated to disease than high frequency variants  

Variants and MAF

Tian R, Basu M, Capriotti E (2014). Bioinformatics. 30: i572-i578

P-value = 3.4e-22
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P-value = 3.6e-82
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On average tumor samples (COAD) have ~150 more rare missense variants and mutated genes

Rate Variants and Genes

Normal           TumorNormal            Tumor

Rare VariantsGenes



The analysis of 1000 Genomes, The Cancer Genome Atlas (TCGA) 
normal and tumor samples shows an increasing number of genes with 
rare nonsynonymous SNVs. 

Mutation rates

Tumor = Colon Adenocarcinoma

PDR = Gene Putative Defective Rate

            Fraction of samples in which a gene has ≥1 

            nonsynonymous variant with MAF≤0.5% 

Cohort %Genes  
PDR≤0.05

%Genes 
PDR>0.05

1000 Genomes 95% 5%
TCGA Normal 92% 8%
TCGA Tumor 82% 18%

82.00 18.00
0

20

40

60

80

100

%
 o

f M
ut

at
ed

 G
en

es

1000 Genomes
TCGA Normal
TCGA Tumor

1000 Genomes
TCGA Normal
TCGA Tumor

82.00 18.00
0

20

40

60

80

100

%
 o

f M
ut

at
ed

 G
en

es

1000 Genomes
TCGA Normal
TCGA Tumor

PDR≤0.05 PDR>0.05



The gene prioritization score is calculated using a binomial distribution. 

ContrastRank score

k:    number of time a gene is observed to be a PIG   

       across all the samples 

N:   total number of samples  

πg:  probability of success 

with k>0



New method for cancer gene prioritization based on the comparison of 
the mutation rates in tumor samples vs normal and 1000 Genomes samples.

Cancer Genome Analysis   

Gene PDR[T] PDR[B] Score
KRAS 0.436 0.009 72.6
TP53 0.441 0.011 63.7

PIK3CA 0.291 0.007 39.4
BRAF 0.146 0.001 29.9

Colon Adenocarcinoma

PDR[T] = Putative Defective Rate Tumor

PDR[B] = Putative Defective Rate Background

Background = Max (Normal and 1000 Genomes) 



The prioritization score can be used to score the whole exome

Whole Exome Score

M: Total number of Putative Impaired Genes (PIGs) in the sample. 

The score associated to the whole sample is the average score over the

total number of putative impaired genes (M) in the sample



New method for discriminating normal from tumor samples scoring 
the genome with the prioritization approach based on the background 
PDR from normal and 1000 Genomes samples. 

Scoring the risk of tumor

Colon Adenocarcinoma

Tumor vs Normal samples

First 4 Genes: KRAS, TP53, PIK3CA, BRAF
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#Genes Accuracy Correlation AUC
4 0.92 0.84 0.92



With three cancer types we tried to discriminate tumor type A from a 
mixture of the remaining two (B +C).


The new prioritization score (sg) is the differences between the score of the 
gene calculated on both subsets.

Discriminating tumor types

sg = sgA - sgBC

In this test we use the top ranking positively scored gene and lowest 
ranking negative scored genes to classify a specific cancer type.



COAD LUAD PRAD
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Profiling tumor mutations comparing specific tumor samples against a 
mixture of other tumor types. 

Tumor Profiling

#Genes Accuracy Correlation AUC
4 0.83 0.70 0.91

Colon vs Lung and Prostate Adenocarcinomas

2 High Positive Genes: KRAS, TP53

2 High Negative Genes: GAGE2A, CT45A6
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Prioritization of genes involved in lung adenocarcinoma

Another example

Gene PDR[T] PDR[B] Score
GAGE2A 0.661 0.018 112.8

KRAS 0.286 0.008 46.3
CT45A6 0.0005 0.149 35.3

TP53 0.012 0.299 33.3

Lung Adenocarcinoma 
PDR[T] = Putative Defective Rate Tumor

PDR[B] = Putative Defective Rate Background

Background = Max (Normal and 1000 Genomes) 
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Scoring normal and tumor samples in lung adenocarcinoma.  

Tumor vs Normal

Lung Adenocarcinoma

Tumor vs Normal samples

First 4 Genes: GEGA2, KRAS, CT45A6, TP53
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#Genes Accuracy Correlation AUC
4 0.90 0.81 0.90



COAD LUAD PRAD
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Comparing lung adenocarcinoma against a mixture of other tumor types. 

Lung adenocarcinoma

#Genes Accuracy Correlation AUC
4 0.66 0.34 0.67

100 0.73 0.49 0.78

Lung vs Colon and Prostate Adenocarcinomas

2 High Positive Genes: GAGE2A, CT45A6

2 High Negative Genes: SPOP, PIK3CA
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Lung adenocarcinoma is more heterogenous than colon and prostate.  
Significantly high scored genes for lung adenocarcinoma are also important for 
prostate and colon adenocarcinomas.

Comparing tumor types

Lung (LUAD), Colon (COAD) and 
Prostate (PRAD) Adenocarcinomas 
Respectively 318, 139 and 96 with 
score > 3 

5 common genes are: TP53, BRAF, 
NBEA, AR, RNF145.

COAD



Improving Prioritization
Considering all but synonymous variants the method assigning the top ranking score 
to APC. When the raking procedure is performed the top genes are:


APC, TP53, KRAS, PIK3CA, BRAF. 
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All but Synonymous
SynonymousUsing PhD-SNPg we predicted 

the impact of the variants


• 66% of the all but synonymous 
are predicted as Pathogenic 


• 10% of the synonymous 
variants are predicted as 
Pathogenic



Exercise

Download the humsavar.txt file from UniProt

• Parse the file and extract variants annotated as Disease and Polymorphism

• Test the discrimination power different substitution matrices (BLOSUM, PAM, etc.) 

• Calculate the performance of the method at the optimized classification threshold.  


