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Models for Sequence
Generative  definition:

• Objects producing different outcomes (sequences) with different probabilities

• The probability distribution over the sequences space determines the model 
specificity

Generates si with probability P(si | M)
e.g.: M is the representation of the family of globins
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Associative Definition

The generative definition is useful as operative definition

• Objects that, given an outcome (sequence), compute a probability value

Calculates the associated probability P(si | M) to si .
e.g.: M is the representation of the family of globins
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Which Model?
The most useful probabilistic models are Trainable systems

The probability density function over the sequence space can be estimated 
from known examples by a learning algorithm

Define a generic representation of the sequences of globins starting from a 
set of known globins 
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Similarity Measure
Given a class of proteins (e.g. Globins), a probabilistic model trained on this 
family can be adopted to compute a probability value for new sequences

Seq1
Seq2
Seq3
Seq4
Seq5
Seq6 

0.98
0.21
0.12
0.89
0.47
0.78

This value measures the similarity between the new sequence and the family 
described by the model



Which Probability?

A model M associates to a sequence si the probability P(si | M)
This probability answers the question:

Which is the probability for a model M (e.g. describing the Globins) to generate 
the sequence si ?

The question we want to answer is:
Given a sequence si , does it belong to the class described by the model M? 
(e.g. is it a Globin?)

We need to compute P(M | si)



Bayes Theorem
P(X,Y) = P(X | Y) P(Y) = P(Y | X) P(X)    Joint probability 

P(M) and P(si)  
A priori probabilities

P(M) is the probability of the model (i.e. of the class described by the model) 
BEFORE we know the sequence:
Can be estimated as the abundance of the class

P(si) is the probability of the sequence in the sequence space.
Cannot be reliably estimated!!

P(Y | X) = 
P(X | Y) P(Y)

P(X) 

P(M | si) = 
P(si | M) P(M)

P(si) 



Comparing Models

Ratio between the abundances of the classes

We can overcome the problem comparing the probability of generating si from 
different models 

P(M1 | si) P(si | M1) P(M1)

P(si) P(si | M2) P(M2)

P(si) 

P(M2 | si) 
= = 

P(si | M1) P(M1)

P(si | M2) P(M2)

P(M1)

P(M2)



Null Model

In this case we need a threshold and a statistic for evaluating the significance 
(E-value, P-value)

Alternatively, we can score a sequence for a model M comparing it to a Null 
Model: 
a model that generates ALL the possible sequences with probabilities 
depending ONLY on letter (e.g. residue) statistical abundance

S(M | si) = log 
P(si | M)

P(si | N)

S(M | si) 

Sequences belonging  
to model MSequences NOT  

belonging to model M



A Simple Model

Define the conditional probabilities 
 
P(C|C), P(C|R),…. P(R|C)…..

Time series of  the weather conditions
as a first hypothesis the weather condition in a day probabilistically depends ONLY 
on the  weather conditions in the day before.

C: Clouds
R: Rain
F: Fog
S: Sun

C R

SF

The probability for the 5-days registration 
CRRCS 
 
P(CRRCS) = P(C)·P(R|C) ·P(R|R) ·P(C|R) ·P(S|C)



Markov Model

 ∑t ar,t + ar,END = 1 ∀ r
 ∑t aBEGIN,t = 1

Stochastic generator of sequences in which the probability of state in position i 
depends ONLY on the state in position i-1

Given a set of states (== alphabet)  
C = {c1; c2; c3; ………cN } 

a Markov model is described with N×(N+2) parameters 
{ar,t , aBEGIN,t , ar,END with r, t  ∈ C}

 ar,q = P( si = q | si-1 = r )
 aBEGIN,q = P( s1 = q )
 ar,END = P( sT = END | sT-1 = r )

C C

CC

BEGIN END

1 2

N3

All transitions going out from a state sum up to 1 



Sequence Probability

P(ALKALI)= aBEGIN,A × aA,L × aL,K × aK,A × aA,L × aL,I × aI,END

Given the sequence:

  s = s1 s2 s3 s4 s6 ……………sT    with   si ∈ C = {c1; c2; c3; ………cN } 

  P( s | M ) = P( s1 ) 𝚷i=2 P( si | si-1 ) =
T

aBEGIN,s1 ×  𝚷i=2 asi-1,si  × asT,END 
T



Probability Constrains
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What are the missing probabilities given the constrains?

What is the better model to describe the weather in winter?
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Probability Calculation
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Consider the sequence “CSSSCFS” and calculate its probability with both models
when P(X | BEGIN) = 0.25

To which season the weather sequence is more likely to belong?

P(CSSSCFS | Winter) = 
0.25×0.1×0.2×0.2×0.3×0.2×0.2

P(CSSSCFS | Summer) = 
0.25×0.4×0.8×0.8×0.1×0.1×1.0



Models Comparison
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P (Seq | Winter) =1.2 x 10-5

P(Winter | Seq)

P (Seq | Summer) = 6.4 x 10-4

P(Summer | Seq)
P(Seq | Winter)

P(Seq | Summer) P(Summer)
P(Winter)

= × ≈ 1with
P(Summer)
P(Winter)



Modeling CpG Islands

In the Markov Model of CpG Islands aGC is higher than in Markov 
Model Non-CpG Islands

S

G C

A T

Non-CpG Islands

S

G C

A T

CpG Islands

P(CpG | s)
P (s | CpG) × P(CpG) + P (s | not CpG) × P(notCpG) 

P ( s | CpG ) × P(CpG) 
= 



Demonstration

P(s) = P(s,CpG) + P(s,notCpG) 

P(s) = 
P(s | CpG) × P(CpG)

P(CpG | s)
= P(s | CpG) × P(CpG) + P(s | notCpG) × P(notCpG)

P(CpG | s)
P (s | CpG) × P(CpG) + P (s | notCpG) × P(notCpG) 

P ( s | CpG ) × P(CpG) 
= 

We assume that only two models (CpG and notCpG) are possible. 

Given the Bayes Theorem

Thus,



Model M
Parameters 𝛉

Training of the Method
Generally speaking, a parametric model M aims to reproduce a set of known data

Real data (D) Modelled data

How to compare them?



Maximum Likelihood
Let 𝛉M  be the set of parameters of model M.

During the training phase, 𝛉M parameters are estimated from the set 
of known data D

Maximum  Likelihood Estimation (ML)

𝛉ML = argmax𝛉 P( D | M, 𝛉 )



Training Proof
Given a sequence s contained in D: s = s1 s2 s3 s4 s6 ……………sT  

We can count the number of transitions between any to states j and k: njk

On top of this, keep in mind that normalization constraints must be satisfied for 
each state

So the likelihood has to be maximized on the variety defined by the normalization 
constraints. How we do that?
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Maximum Likelihood
Let 𝛉M  be the set of parameters of model M.

During the training phase, 𝛉M parameters are estimated from the set 
of known data D

Maximum  Likelihood Estimation (ML)

𝛉ML = argmax𝛉 P( D | M, 𝛉 )

Maximum  A Posteriori Estimation

𝛉MAP = argmax𝛉 P( 𝛉 | M, D ) = argmax𝛉 [ P( D | M, 𝛉 ) × P(𝛉) ] 

Frequency of occurrence as counted in 
the data set Daik = 

nik
Sj nij

It can be proved that:



Example with Dice
We have 99 regular dice (R) and 1 loaded die (L).

  P(1)  P(2)  P(3)  P(4)  P(5)  P(6)  
R            1/6    1/6   1/6    1/6    1/6    1/6  
L           1/10  1/10  1/10  1/10  1/10   1/2 

Given a sequence of numbers:

4156266656321636543662152611536264162364261664616263 

What is the sequence of dice that generated it?

RRRRRLRLRRRRRRRLRRRRRRRRRRRRLRLRRRRRRRRLRRRRLRRRRLRR 



Hypothesis
We chose a different die for each roll

Two stochastic processes give origin to the sequence of observations.

1) Choosing the die ( R o L ).                     2)  Rolling the die

The sequence of dice is hidden

The first process is assumed to be Markovian (in this case a 0-order MM)

The outcome of the second process depends only on the state reached in the 
first process (that is the chosen die)



Casinò

Each state (R and L)  generates a character of the alphabet 
C = {1, 2, 3, 4, 5, 6 }

The emission probabilities depend only on the state.

The transition probabilities describe a Markov model that generates a state path: 
the hidden sequence (𝜋)

The observations sequence (s) is generated by two concomitant stochastic 
processes

R L
0.01

0.01
0.99

0.99



One Step

Choose the State :  R  Probability= 0.99

Chose the Symbol: 1   Probability= 1/6 (given R)

415626665632163654366215261 
RRRRRLRLRRRRRRRLRRRRRRRRRRR

4156266656321636543662152611 
RRRRRLRLRRRRRRRLRRRRRRRRRRRR

R L
0.01

0.01
0.99

0.99



Alternative Step

Choose the State :  L  Probability= 0.01

Chose the Symbol: 5   Probability= 1/10 (given L)

415626665632163654366215261 
RRRRRLRLRRRRRRRLRRRRRRRRRRR

4156266656321636543662152615 
RRRRRLRLRRRRRRRLRRRRRRRRRRRL

R L
0.01

0.01
0.99

0.99



Some applications

2) THE METEREOPATHIC TEACHER

Observable: Average of the marks that a meteoropathic teacher gives to their students 
during a day.
Hidden variable: Weather conditions

—> can we deduce the weather conditions during a years by means of the class register?

1) DEMOGRAPHY

Observable: Number of births and deaths in a year in a village.
Hidden variable: Economic conditions (as a first approximation we can consider the 
success in business as a random variable, and by consequence, the wealth as a Markov 
variable 

—> can we deduce the economic conditions of a village during a century by means of    
the register of births and deaths?



In Bioinformatics

2) ALIGNMENT 

Observable: protein sequence
Hidden variable: position of each residue along the alignment of a protein family

---> can we align a protein to a family, starting from its amino acid sequence?

1) SECONDARY STRUCTURE

Observable: protein sequence
Hidden variable: secondary structure 

---> can we deduce (predict) the secondary structure of a protein given its amino acid 
sequence? 



Exercise
Given the observation sequence:

CCCFFCRRRCCSSSSFSFRRFFSSFSCSRRS 

and the model on the left

Write a script to set the parameters  of the 
Markov Model that maximize the probability 
of the sequence
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Credits to Pier Luigi Martelli 


