Hidden Markov Models

Laboratory of Bioinformatics I Module 2

Emidio Capriotti [http://biofold.org/](http://bass.uib.es/emidio)

Department of Pharmacy and Biotechnology (FaBiT) University of Bologna

Formal Definition

A HMM is a stochastic generator of sequences characterized by:

- • *N* states
- A set of transition probabilities between two states $\{a_{ki}\}$ $a_{ki} = P(\pi(i) = j | \pi(i-1) = k)$
- A set of starting probabilities $\{a_{0k}\}\$

 $a_{0k} = P(\pi(1) = k)$

• A set of ending probabilities $\{a_{k0}\}\$

 $a_{k0} = P(\pi(i) = \text{END} | \pi(i-1) = k)$

- An alphabet *C* with *M* characters.
- A set of emission probabilities for each state ${e_k(c)}$

$$
e_k(c) = P(s^i = c \mid \pi(i) = k)
$$

•Constraints:

$$
\Sigma_k \quad a_{0k} = 1
$$
\n
$$
a_{k0} + \Sigma_j \quad a_{kj} = 1
$$
\n
$$
\Sigma_{c \in C} \quad e_k(c) = 1
$$
\n
$$
\forall k
$$
\n
$$
\forall k
$$

s: sequence, π : path through the states

Hidden Markov Models

HMMs interpret an observable sequence (residue sequence or DNA/RNA sequence) as «generated» by an underlying (hidden) process.

Transition topology and probabilities define a global grammar

Emission probabilities cast the propensity of observable symbols in each state

Secondary Structure

S A L K M N Y T R E I M V A S N Q s: sequence c $\alpha_1 \alpha_2 \alpha_3 \alpha_3 \alpha_3 \alpha_3$ c c c $\beta_1 \beta_2 \beta_2 \beta_2$ c α π : path c α α α α α c c c β β β β c c $\gamma(\pi)$: labels

Generating HMM Sequence

CpG Islands Model

Probability of a sequence *s* with a given path *π*

Emission: 0.1 × 0.4 ×0.4 × 0.4 ×0.4 ×0.4 ×0.1×0.25×0.25×0.25×0.25×0.25×0.25 Transition: $0.2 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.7 \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.1$

Joint Probability

Calculate the joint probability of the sequence (s) ad the path (π) given the model (M)

$$
P(s, \pi | M) = P(s | \pi, M) \cdot P(\pi | M)
$$

\n
$$
P(\pi | M) = a_{0\pi(1)} \cdot \prod_{i=2}^{T} a_{\pi(i-1)\pi(i)} \cdot a_{\pi(T)0}
$$

\n
$$
P(s | \pi, M) = \prod_{i=1}^{T} e_{\pi(i)}(s^{i})
$$

\n
$$
P(s, \pi | M) = a_{\pi(T)0} \cdot \prod_{i=1}^{T} a_{\pi(i-1)\pi(i)} \cdot e_{\pi(i)}(s^{i})
$$

Sequence Probability

 $P(S|M) = \sum_{\pi} P(S, \pi|M)$

213 different paths

Summing over all the path will give the probability of having the sequence

Forward Algorithm

On the basis of preceding observations the computation of P(s I M) can be decomposed in simplest problems

For each state k and each position i in the sequence, we compute:

$$
F_k(i) = P(|s^1 s^2 s^3 \dots s^i, \pi(i) = k | M)
$$

Initialization: $F_{BEGIN}(0) = 1$ $F_i(0) = 0$ $\forall i \neq BEGIN$ *Recurrence*: F_l ($i+1$) = P($s^1s^2...s$ is $i+1$, π ($i+1$) = l) = $= \sum_{k} P(\, s^1 s^2 \dots s^i, \pi(i) = k \,) \cdot a_{k l} \cdot e_{l}(\, s^{i+1}) =$ $= e_i (s^{i+1}) \cdot \sum_k F_k (i) \cdot a_{k}$ *Termination*: $P(s) = P(s^{1}s^{2}s^{3}....s^{T}, \pi(T+1) = END$) = $= \sum_{k} P(\ s^{1} s^{2} ... s^{T}, \pi(T) = k) \cdot a_{k0}$

 $= \sum_k F_k(T) \cdot a_{k,0}$

Forward Algorithm: Example

S: ATGCG *Initialization:* $F_{BEGIN}(0) = 1 F_i(0) = 0 \ \forall \ i \neq BEGIN$

Recurrence: $F_l(i+1) = e_l(s^i) \cdot \sum_k F_k(i) \cdot a_{ki}$					
---	--	--	--	--	--

 $P(x) = \sum_k F_k(T) \cdot a_{k,0}$

Backward Algorithm

Similar to the Forward algorithm: it computes P(s | M), reconstructing the sequence from the end

For each state k and each position i in the sequence, we compute:

$$
B_k(i) = P(|S|^{i+1}S|^{i+2}S|^{i+3}...,S|^{T} | \pi(i) = k)
$$

Initialization: $B_k(T) = P(\pi(T+1) = END | \pi(T) = k) = a_{k0}$

Recurrence: $B_l(i-1) = P(s \text{ is } i+1...s \text{ } T \mid \pi(i-1) = l) =$

$$
= \sum_{k} P(s^{i+1}s^{i+2}...s^{T} | \pi(i) = k) \cdot a_{lk} \cdot e_k(s^{i}) =
$$

$$
=\Sigma_k B_k (i) \cdot e_k (s^i) \cdot a_{lk}
$$

Termination: $P(s) = P(s^1 s^2 s^3 s^T | \pi(0) = BEGIN) =$ $= \sum_k P(\, s^2 \dots s^T \mid \pi(1) = k) \cdot a_{0k} \cdot e_k(\, s^1) =$ $=\sum_k B_k(1) \cdot a_{0k} \cdot e_k(s^1)$

Computational Complexity

Naïf method

 $P(S|M) = \sum_{\pi} P(S, \pi|M)$

There are *N T* possible paths.

Each path requires about *2*⋅*T* operations.

The time for the computation is *O(T*⋅ *N T)*

Forward Algorithm

T positions*, N* values for each position

Each element requires about *2*⋅*N* product and **1** sum

The time for the computation is *O(T*⋅ *N2)*

Complexity Plot

Hidden Paths

 π^* = argmax $_{\pi}$ [P(π | *s*, *M*)] $=$ argmax_{π} [P(π , s | M)]

213 different paths Viterbi path: path that gives the best joint probability

S : A G C G C G T A A T C T G							
$\pi_1\colon\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}$							
π_2 : Y Y Y Y Y Y Y Y Y Y Y Y N							
$\pi_4\colon\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{Y}\quad\thinspace\mathbf{N}\quad\thinspace\mathbf{N}\quad\thinspace\mathbf{N}$							
$\pi_5: \textbf{Y} \quad \textbf{N} \quad \textbf{Y} \quad \textbf{Y}$							

Searching the Hidden Path

Viterbi decoding

Among all the possible path, choose the path π^* that maximizes the $P(\pi | s, M)$

$$
\pi^* = \operatorname{argmax}_{\pi} [P(\pi | s, M)] = \operatorname{argmax}_{\pi} [P(\pi, s | M)]
$$

A Posteriori decoding

For each position choose the state $\pi(i)$:

$$
\underline{\pi}(i) = \operatorname{argmax}_{k} [P(\pi(i) = k | s, M)]
$$

The contribution to this probability derives from all the paths that go through the state *k* at position *i.*

The A posteriori path can be a non-sense path (it may not be a legitimate path if some transitions are not permitted in the model)

Viterbi Algorithm

 π^* = argmax $_{\pi}$ [P(π , s | *M*)] The computation of $P(s, \pi^* | M)$ can be decomposed in simplest problems

Let $V_k(i)$ be the probability of the most probable path for generating the subsequence $s^1s^2s^3\dots\ldots s^i$ ending in the state *k* at iteration *i.*

Viterbi Algorithm: Example

S: ATGCG *Initialization:* $V_{BEGIN}(0) = 1$ $V_i(0) = 0$ $\forall i \neq \text{BEGIN}$

Recurrence: $V_l(i) = e_l(s^i) \cdot Max_k(V_k(i-1) \cdot a_{kl}) - ptr_i(l) = argmax_k(V_k(i-1) \cdot a_{kl})$ *Termination*: $P(s, \pi^*) = Max_k (V_k(T) \cdot a_{k0}) - \pi^* (T) = argmax_k (V_k(T) \cdot a_{k0})$ *Traceback:* π^* (*i*-1) = ptr $_i(\pi^*(i))$

Build an HMM modeling CpG islands sequences using the following model where the states Y and N can emit the letters representing the 4 nucleotides.

For this exercise we consider as a training sequence the **[human chromosome 21](https://hgdownload.cse.ucsc.edu/goldenpath/hg38/chromosomes/chr21.fa.gz)** downloaded from the ucsc genome browser. For the GpC Island annotation refer to the [cpgIslandExt.txt.gz](https://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz) file.