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A HMM is a stochastic generator of sequences characterized by:

• N states
• A set of transition probabilities between two states {akj}

akj  =  P( π (i) = j | π (i-1) = k )                  
• A set of starting probabilities {a0k} 

a0k  =  P( π (1) = k ) 
• A set of ending probabilities {ak0} 

ak0  =  P( π (i) = END | π (i-1) = k ) 
• An alphabet C  with M characters.
• A set of emission probabilities for each state {ek (c)} 

ek (c) = P( s i = c | π (i) = k ) 
•Constraints:
Σk  a0 k =  1 
ak0 +  Σj  ak j =  1   ∀ k 
Σc∈ C  ek (c) = 1   ∀ k 

s: sequence, π: path through the states

Formal Definition



Hidden Markov Models

HMMs interpret an observable sequence (residue sequence or DNA/RNA 
sequence) as «generated» by an underlying (hidden) process.

Transition topology and probabilities define a global grammar

Emission probabilities cast the propensity of observable symbols in each state



S A L K M N Y T R E I M V A S N Q  s: sequence 
c  α1 α2 α3 α3 α3  α3 c  c   c  c   β1 β2  β2 β2 c c π: path
c  α   α   α   α   α    α   c  c   c  c   β   β    β   β   c c Y(π): labels
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Initial state π (1) - probabilities a0k

i=1

s i ∈ C  - probabilities ek(c)

next state - probabilities ak j and ak0 

End state? Endi→i+1

Generating HMM Sequence

YesNo



CpG Islands Model

Y N

End

Begin

eY (A) = 0.1 eY (G) = 0.4
eY (C) = 0.4  eY (T) = 0.1 

eN (A) = 0.25  eN (G) = 0.25
eN (C) = 0.25  eN (T) = 0.25 

a0N = 0.8

aNN = 0.8

aN0 = 0.1aY0 = 0.1

aYY = 0.7

a0Y = 0.2

aYN = 0.2

aNY = 0.1
CpG Island Non-CpG Island

s :  A  G  C  G  C  G  T  A  A  T  C  T  G 
π :  Y  Y  Y  Y  Y  Y  Y  N  N  N  N  N  N

Emission:          0.1 × 0.4 ×0.4 × 0.4 ×0.4 ×0.4 ×0.1×0.25×0.25×0.25×0.25×0.25×0.25
Transition:   0.2 × 0.7 × 0.7 × 0.7 × 0.7 × 0.7 × 0.7 × 0.2×0.8 × 0.8 ×0.8×0.8× 0.8 × 0.1     

Probability of a sequence s with a given path π
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Joint Probability
Calculate the joint probability of the sequence (s) ad the path (π) given the model (M)



Sequence Probability

s :   A  G  C  G  C  G  T  A  A  T  C  T  G 
π1:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y
π2:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N
π3:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N  Y
π4:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N  N
π5:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N  Y  Y

P ( s | M )  =  Σπ P( s, π | M )
213 different paths

Summing over all the path will give the 
probability of having the sequence



Forward Algorithm

           Fk(i) = P( s1s2s3……s i, π (i) = k | M)  

Initialization:   FBEGIN (0) = 1    Fi (0) = 0 ∀  i ≠ BEGIN 

Recurrence:   Fl ( i+1) = P( s1s2…s is i+1, π (i + 1) = l )  = 

                         = Σk P( s1s2 …s i, π (i) = k ) ⋅ a k l ⋅ e l ( s i+1 ) =  

                         = e l ( s i+1 ) ⋅ Σk Fk  ( i ) ⋅ a k l 

Termination:   P( s ) = P( s1s2s3……s T, π (T + 1) = END ) = 

                         = Σk P( s1s2 …s T , π (T) = k ) ⋅ a k0  

                         =  Σk Fk ( T ) ⋅ a k 0

On the basis of preceding observations the computation of P(s | M) 
can be decomposed in simplest problems

 For each state k and each position i in the sequence, we compute:



Forward Algorithm: Example

 S:  ATGCG    Initialization: FBEGIN (0) = 1 Fi (0) = 0 ∀  i ≠ BEGIN  

- A T G C G -

Begin 1 0 0 0 0 0 0

Y 0 0.2x0.1
2e-2x0.7x0.1+
+0.2x0.1x0.1=

=3.4e-3

3.4e-3x0.7x0.4+
+4.1e-2x0.1x0.4=

=2.59e-3

2.59e-3x0.7x0.4+
+8.37e-3x0.1x0.4=

=1.06056e-3

1.06056e-3x0.7x0.4+
+1.8036e-3x0.1x0.4=

=3.691008e-4

N 0 0.8x0.25
2e-2x0.2x0.25+
+0.2x0.8x0.25=

=4.1e-2

3.4e-3x0.2x0.25+
+4.1e-2x0.8x0.25=

=8.37e-3

2.592e-3x0.2x0.25+
+8.37e-3x0.8x0.25=

=1.8036e-3

1.06056e-3x0.2x0.25+
+1.8036e-3x0.8x0.25=

=4.13748e-4

End 0 0 0 0 0 0
3.69e-4x0.1+

+4.13e-4x0.1=
=7.82e-5

Recurrence:   Fl (i+1) =  e l ( s i) ⋅ Σk Fk  ( i ) ⋅ a k l Termination:   P( s ) = Σk Fk ( T ) ⋅ a k 0



Backward Algorithm

Initialization:   Bk (T) = P(π (T+1) = END | π (T) = k ) = ak0 

Recurrence:   Bl ( i-1) = P(s is i+1…s T | π (i - 1) = l )  = 

          = Σk P(s i+1s i+2…s T | π (i) = k) ⋅ a l k ⋅ e k (s i )= 

          = Σk Bk  ( i ) ⋅ e k ( s i ) ⋅ a l k 
Termination:   P( s ) = P( s1s2s3……s T | π (0) = BEGIN ) = 

          = Σk P( s2 …s T  | π (1) = k ) ⋅ a 0 k ⋅ e k ( s 1 ) =  

          = Σk Bk ( 1 ) ⋅ a 0k ⋅ e k ( s 1 )

Similar to the Forward algorithm: it computes P( s | M ), reconstructing 
the sequence from the end

For each state k and each position i in the sequence, we compute:

Bk(i) = P( s i+1s i+2s i+3……s T | π (i) = k )



Computational Complexity
Naïf method 

 There are N T possible paths.

Each path requires about 2⋅T  operations.

The time for the computation is  O( T⋅ N T )

Forward Algorithm

T positions, N values for each position

Each element requires about 2⋅N product and 1 sum

 The time for the computation is O(T⋅ N2)

P ( s | M )  =  Σπ P( s, π | M )
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Hidden Paths

s :   A  G  C  G  C  G  T  A  A  T  C  T  G 
π1:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y
π2:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N
π3:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N  Y
π4:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N  N
π5:  Y  Y  Y  Y  Y  Y  Y  Y  Y  Y  N  Y  Y

213 different paths
Viterbi path: path that gives 

the best joint probability

π* = argmax π [ P( π | s, M ) ] 
     = argmax π [ P( π , s | M ) ]



Searching the Hidden Path
Viterbi decoding 
Among all the possible path, choose the path π* that maximizes the  
P( π | s, M ) 

  π* = argmax π [ P( π | s, M ) ] = argmax π [ P( π , s | M ) ] 

A Posteriori decoding
For each position choose the state π (i):  

 
 π (i) = argmax k [ P( π (i) = k| s, M ) ]  

The contribution to this probability derives from all the paths that go 
through the state k at position i.

The A posteriori path can be a non-sense path (it may not be a 
legitimate path if some transitions are not permitted in the model)



Viterbi Algorithm

Initialization:       VBEGIN (0) = 1    Vi (0) = 0 ∀  i ≠ BEGIN 

Recurrence:       Vl ( i+1) = e l ( s i+1 ) ⋅ Max k ( Vk  ( i ) ⋅ a k l ) 

  ptr i ( l ) = argmax k ( Vk  ( i ) ⋅ a k l ) 

Termination:       P( s, π* ) =Maxk (Vk ( T ) ⋅ a k 0 ) 

  π* ( T ) = argmax k (Vk ( T ) ⋅ a k 0 ) 
Traceback: π* ( i-1 ) = ptr i (π* ( i ))

π* = argmax π [ P( π , s | M ) ]
The computation of P(s,π*| M) can be decomposed in simplest 
problems

Let Vk(i) be the probability of the most probable path for generating the 
subsequence s1s2s3……s i ending in the state k at iteration i.



Viterbi Algorithm: Example

 S:  ATGCG    Initialization: VBEGIN (0) = 1 Vi (0) = 0 ∀  i ≠ BEGIN  

- A T G C G -

Begin 1 0 0 0 0 0 0

Y 0
0.2x0.1=

=2e-2
ptr=Begin

Max(2e-2x0.7x0.1;        
0.2x0.1x0.1)
2e-3; ptr=N

Max(2e-3x0.7x0.4; 
1.6e-2x0.1x0.4)
6.4e-4; ptr=N

Max(6.4e-4x0.7x0.4;         
3.2e-4x0.1x0.4)
1.79e-4; ptr=Y

Max(1.79e-4x0.7x0.4;         
6.4e-5x0.1x0.4)
5.02e-5; ptr=Y

N 0
0.8x0.25=

=0.2
ptr=Begin

Max(2e-2x0.2x0.25; 
0.2x0.8x0.25)
1.6e-2; ptr=N

Max(2e-3x0.2x0.25;
      1.6e-2x0.8x0.25)

3.2e-4; ptr=N

Max(6.4e-4x0.2x0.25;
        3.2e-4x0.8x0.25)

6.4e-5; ptr=N

Max(1.79e-4x0.2x0.25
;6.4e-5x0.8x0.25)

1.28e-5; ptr=N

End 0 0 0 0 0 0
Max(5.01e-5x0.1;       

1.28e-5x0.1)
5.02e-6; ptr=Y

Recurrence:   Vl (i) = e l ( si ) ⋅ Max k ( Vk  (i-1) ⋅ a k l )  —  ptri ( l ) = argmax k ( Vk  (i-1) ⋅ a k l )
Termination:   P( s, π* ) =Maxk (Vk ( T ) ⋅ a k 0 )  —  π* ( T ) = argmax k (Vk ( T ) ⋅ a k 0 ) 

Traceback: π* ( i-1 ) = ptr i (π* ( i ))



Exercise
Build an HMM modeling CpG islands sequences using the following model where 
the states Y and N can emit the letters representing the 4 nucleotides.

For this exercise we consider as a training sequence the human chromosome 21 
downloaded from the ucsc genome browser. For the GpC Island annotation refer 
to the cpgIslandExt.txt.gz file.

https://hgdownload.cse.ucsc.edu/goldenpath/hg38/chromosomes/chr21.fa.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/chromosomes/chr21.fa.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExt.txt.gz

