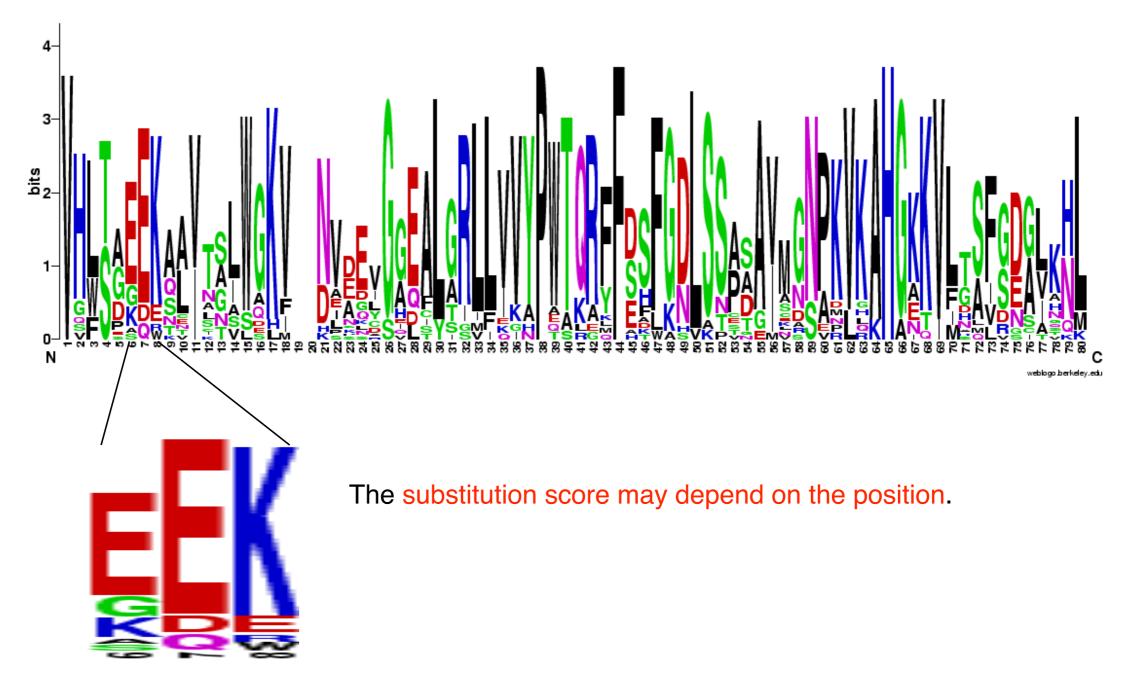
Hidden Markov Models for Sequence Alignment

Laboratory of Bioinformatics I Module 2

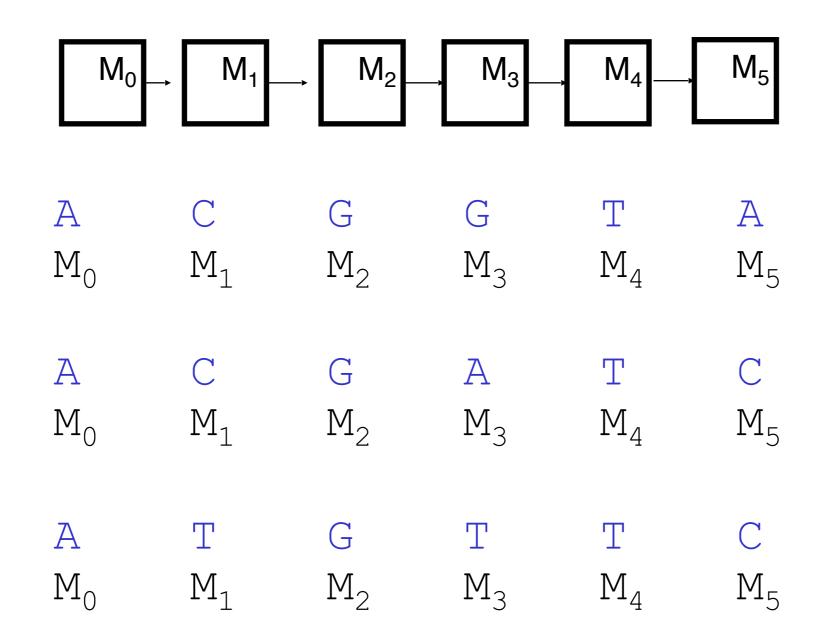
Emidio Capriotti http://biofold.org/

Department of Pharmacy and Biotechnology (FaBiT) University of Bologna


Alignment of Globins

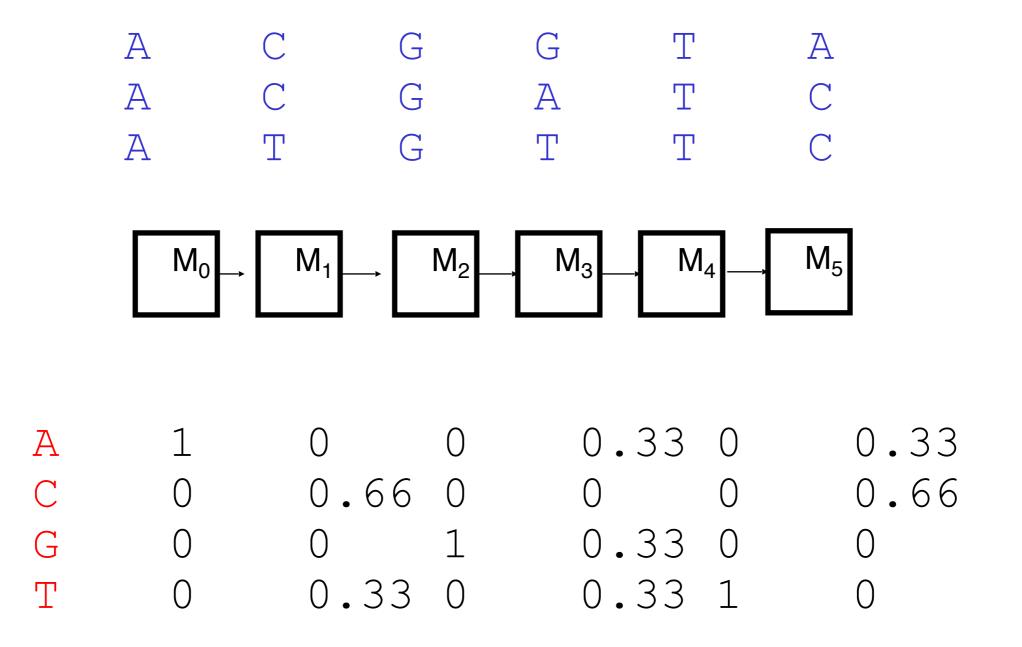
Different positions are not equivalent

	10	20	30	40	50	60	70	80
lqb1 pea/1-471 - <mark>GFT</mark> D	K <mark>QE</mark> ALVNS <mark>SS</mark> E-1	FKQNL <mark>PG</mark> YS:	ILFYTIVLEKA <mark>F</mark>	AAK <mark>GLF</mark> SFLF	DTA <mark>GV</mark> ED	SPKLQAHAE	VF <mark>GLVRDS</mark> A	AQL
lqb1 vicfa/1-471- <mark>GFT</mark> E	K <mark>QE</mark> ALVNS <mark>SS</mark> QL	FKQN <mark>P</mark> SNYS	VLFYTI ILQKA <mark>F</mark>	TAKAMFSFLF	dsa <mark>gv</mark> vd	SPKLGAHAE	VF <mark>G</mark> MVRD <mark>S</mark> A	VQL
hbb speci/1-471 V <mark>HLS</mark> D	G <mark>ek</mark> naistaw <mark>gk</mark>	VHAA <mark>ev</mark> gj	A <mark>EALGR</mark> LLVV <mark>Y</mark> F	WTQRFFDSF	DL <mark>S</mark> SASAVMG	NAKV <mark>KAH</mark> GKI	WID <mark>S</mark> FSN <mark>G</mark> L	KHL
hbb speto/1-471 V <mark>HL</mark> TD	geknaistaw <mark>gk</mark>	VNAA <mark>E</mark> IGJ	A <mark>E</mark> AL <mark>GR</mark> LLVV <mark>Y</mark> F	WTQRFFDSF <mark>6</mark>	DL <mark>S</mark> SASAVMG	NAKVKAHGKI	WID <mark>S</mark> FSN <mark>G</mark> LI	KHL
hbb equhe/1-471 VQ <mark>LSG</mark>	E <mark>EK</mark> AAVLALWD <mark>K</mark>	vnee <mark>ev</mark> go	3EAL <mark>GR</mark> LLVV <mark>Y</mark> F	WTQRFFDSF	DLSNPAAVMG	N <mark>PKVKAH</mark> GKI	(VLH <mark>SF</mark> GEGV)	HHL
hbb sunmu/1-471 V <mark>HL</mark> SG	E <mark>EK</mark> ACVT <mark>GLWGK</mark>	vned <mark>ev</mark> gj	A <mark>EALGR</mark> LLVV <mark>Y</mark> F	WTQRFFDSF	DL <mark>S</mark> SASAVM	N <mark>PKVKAH</mark> GKI	WLH <mark>SL</mark> GEGW	ANL
hbb tupql/1-471 V <mark>HL</mark> SG	E <mark>EK</mark> AAVT <mark>GLWGK</mark>	VDLEKV <mark>G</mark> (3 <mark>05</mark> LGSLLIVYF	WTQRFFDSFG	DL <mark>S</mark> SPSAVMS	N <mark>PKVKAH</mark> GKI	VLT <mark>S</mark> FSDGL)	NHL
hbb calar/1-471 V <mark>HL</mark> TG	E <mark>EK</mark> SAVTALWGK	vnvd <mark>ev</mark> go	3EALGRLLVVYF	WTQRFFESF	JLSTPDAVMN	IN <mark>P KVKAH</mark> GKI	WL <mark>GAF</mark> SD <mark>GL</mark>	THL
hbb mansp/1-471 VHLTP	E <mark>EK</mark> TAVTTLWGK	vnvd <mark>ev</mark> go	3EALGRLLVVYF	WTQRFFDSF	DLSSPDAVMG	NPKVKAHGKI	VL <mark>G</mark> AFSDGLI	NHL
hbb rabit/1-471 V <mark>HLS</mark> S	E <mark>EK</mark> SAVTALWGK	vnve <mark>ev</mark> go	3EALGRLLVV <mark>Y</mark> F	WTQRFFESF	JLSSANAVMN	IN <mark>P KVKAH</mark> GKF	VLAAFSE <mark>G</mark> L:	SHL
hbb ursma/1-471 V <mark>HL</mark> TG	E <mark>EK</mark> SLVT <mark>GLWGK</mark>	VNVD <mark>EV</mark> GO	3EALGRLLVV <mark>Y</mark> F	WTQRFFDSF	<mark>dls</mark> sada imn	IN <mark>P KVKAH</mark> GKF	VLN <mark>S</mark> FSDGLI	KNL
hbb triin/1-471 V <mark>HLTP</mark>	EEKALVIGLWAK	VNVK <mark>EY</mark> GO	3EALGRLLVV <mark>Y</mark> F	WTQRFFEHF	DL <mark>S</mark> SASAIMN	IN <mark>PKVKAH</mark> GEF	WFT <mark>SF</mark> GD <mark>G</mark> LI	KHL
hbb ornan/1-471 V <mark>HL</mark> SG	<mark>gek</mark> savtnlw <mark>gk</mark>	VNIN <mark>EL</mark> GO	3EALGRLLVV <mark>Y</mark> F	WTQRFFEAF	DL <mark>S</mark> SA <mark>G</mark> AVMG	N <mark>PKVKAH</mark> GAF	VLT <mark>SFG</mark> DAL)	KNL
hbb tacac/1-471 V <mark>HLSG</mark>	S <mark>EK</mark> TAVTNLWGH	VNVN <mark>EL</mark> GO	3EALGRLLVV <mark>Y</mark> F	WTQRFFESF	DLSSADAVMG	NAKVKAHGAR	VLT <mark>SFG</mark> DAL)	KNL
hbe ponpy/1-471 VHF <mark>T</mark> A	E <mark>ek</mark> aavtslws <mark>ki</mark>	MNVE <mark>EA</mark> G(3EALGRLLVVYF	WTQRFFDSF	NL <mark>S</mark> S <mark>P</mark> SAILG	NPKVKAHGKI	VLT <mark>SFG</mark> DAI)	KNM
hbb colli/1-471 V <mark>HWS</mark> A	E <mark>EK</mark> QLITSIWGK	VNVA <mark>D</mark> C <mark>G</mark> ä	A <mark>EALAR</mark> LL IV <mark>Y</mark> F	WTQRFFSSF	NL <mark>S</mark> SATAISG	NPNVKAHGKI	VLT <mark>SF</mark> GDAV)	KNL
hbb larri/1-471 V <mark>HWS</mark> A	E <mark>EK</mark> QLIT <mark>GLWGK</mark>	VNVA <mark>D</mark> C <mark>G</mark>	A <mark>EALAR</mark> LLIV <mark>Y</mark> F	WTQRFFASF	NL <mark>S</mark> SPTAING	NPMVRAHGKI	(VLT <mark>SF</mark> GEAV)	KNL
hbb1 varex/1-471V <mark>HWT</mark> A	E <mark>EK</mark> QLICSLWGK	IDV <mark>G</mark> LI <mark>G</mark> (SETLAGLLV I <mark>Y</mark> F	WTQRQFSHF	NLSS <mark>P</mark> TAIAG	N <mark>PRVKAH</mark> GKI	VLT <mark>S</mark> FGDAI)	KNL
hbb2 xentr/1-471V <mark>HWT</mark> A	E <mark>ek</mark> atiasvw <mark>gk</mark>	VDIE <mark>Q</mark> D <mark>G</mark> I	H <mark>DALS</mark> RLLVV <mark>Y</mark> F	WTQRYFSSFC	NL <mark>S</mark> NVSAVSG	NVKV <mark>K</mark> AHGNI	VLSAV <mark>G</mark> SAI	QHL
hbbl ranca/1-471V <mark>HWT</mark> A	E <mark>ek</mark> avinsvwo <mark>k</mark>	VDVE <mark>Q</mark> D <mark>G</mark> I	H <mark>e</mark> alt <mark>r</mark> lfiv <mark>y</mark> f	WTQRYFSTFC	DL <mark>S</mark> SPAAIAG	N <mark>P KVHAH</mark> GKI	IL <mark>G</mark> AIDNAI)	HNL
hbb2 tricr/1-471V <mark>HLT</mark> A	E <mark>dr</mark> ke iaa il g <mark>r</mark>	VNVDSLG	3 <mark>0</mark> CLA <mark>R</mark> LIVVN <mark>F</mark>	WSRRYFHDF <mark>@</mark>	DL <mark>S</mark> SCDAICF	N <mark>PKVLAHG</mark> A	VMR <mark>SIVEAT</mark>	KHL
hba4 salir/1-471- <mark>SLS</mark> A	K <mark>DK</mark> ANVKA IW <mark>GK</mark>	IL <mark>PKS</mark> D <mark>EI</mark> GI	e <mark>q</mark> als <mark>r</mark> mlvv <mark>y</mark> f	Q <mark>TKAYF</mark> SHWA	SVAP	SAPVKKHG 17	IMNQIDDCV	GHM
myg_escgi/1-471 - <mark>VLS</mark> D.	A <mark>E</mark> WQLVLNIWA <mark>K</mark>	VEAD <mark>VAGHG</mark> (O <mark>D IL I R</mark> LFK <mark>GH</mark> F	ETLEKFDKF	(H <mark>l</mark> kteae <mark>m</mark> ka	SEDL <mark>K</mark> K <mark>HG</mark> NT	IVLTAL <mark>GG</mark> ILI	ККК

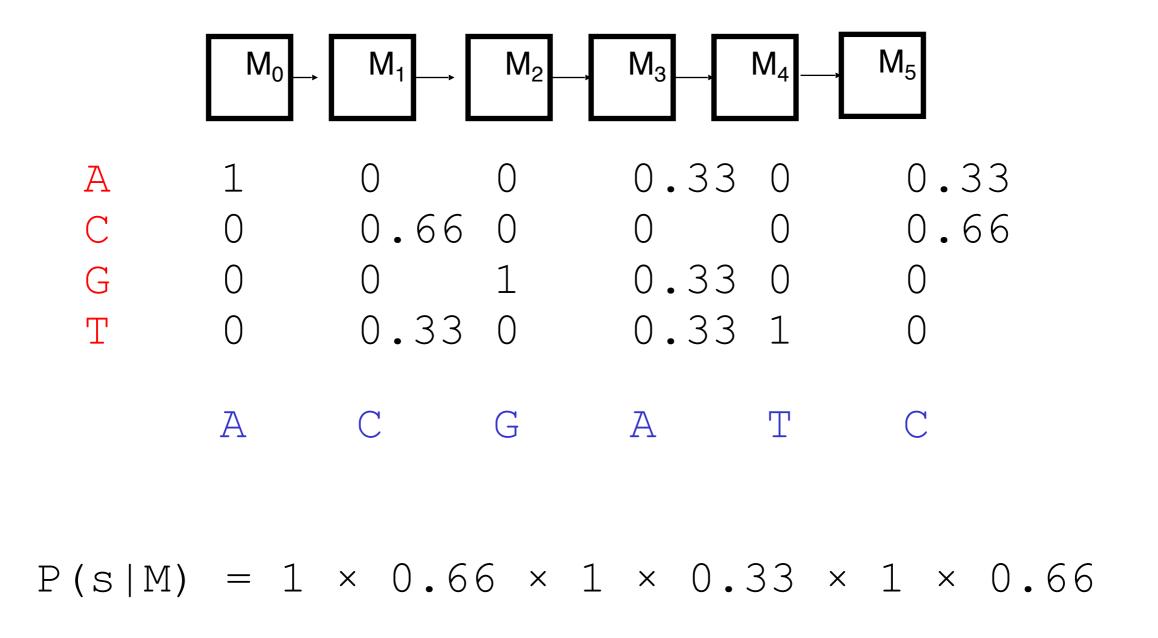

Sequence Logo

A more flexible alignment score is needed to align protein families

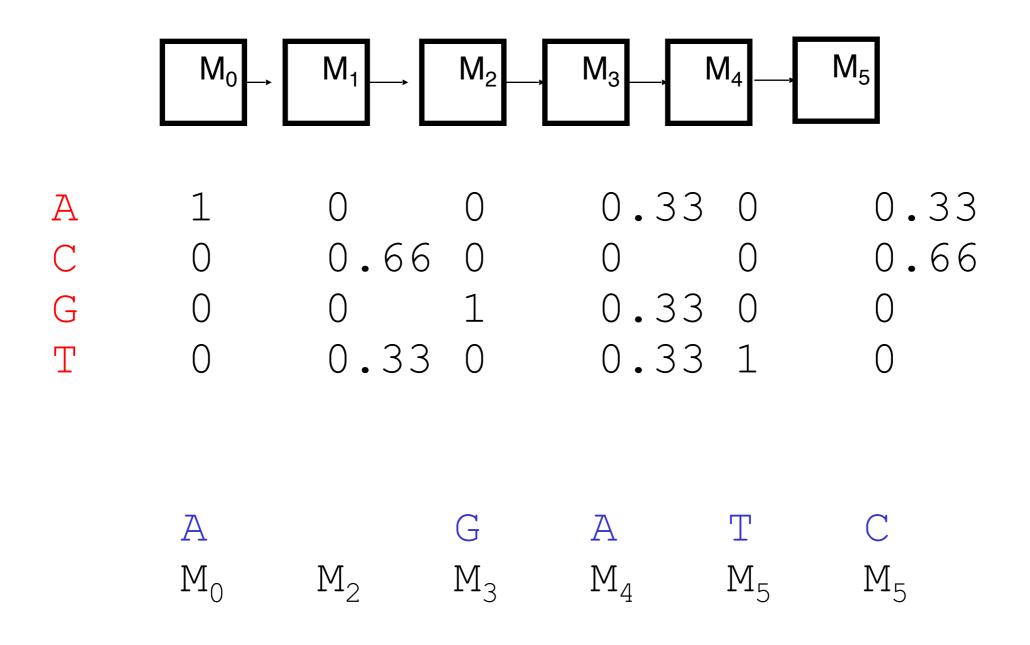
How to Align?


Each state represent a position in the alignment.

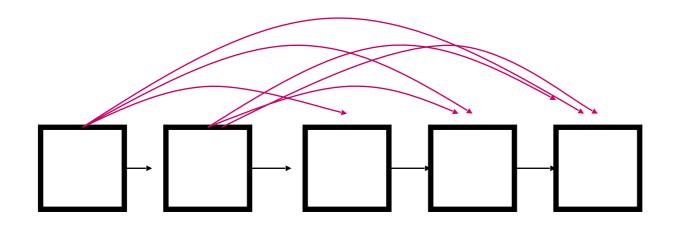
Each position has a peculiar composition


From Sequences to Model

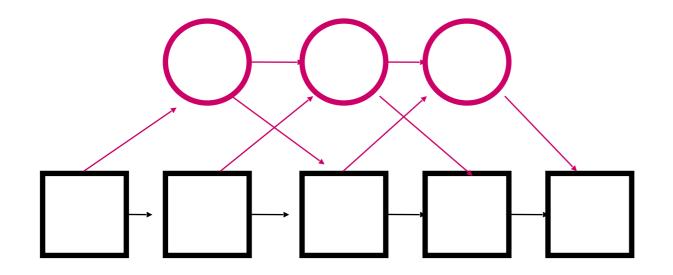
Given a set of sequences we can train a model by estimating the emission probability


Scoring a Sequence

Given the model we can calculate the probability of the a new aligned sequence

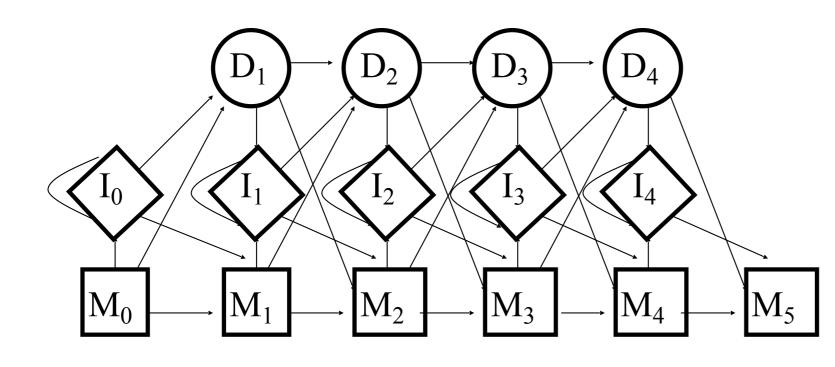

Alignments with Gaps

A strategy to introduce gaps is needed



Silent States

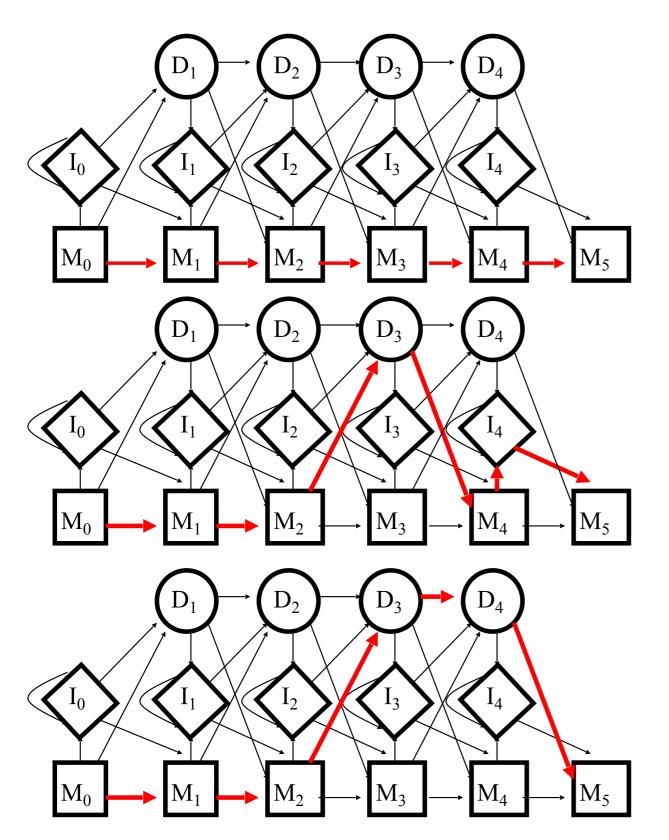
Different topology to model gaps



N(N-1)/2 transitions

To reduce the number of parameters we can use states that doesn't emit any character 4N-8 transitions

Profile HMM


Delete states

Insert states

Match states

A	С	G	G	T	A
M ₀	М ₁	M ₂	M ₃	M ₄	M ₅
Α C G	С	A	G	T	С
M ₀ I ₀ I ₀	М ₁	M ₂	M ₃	M ₄	М ₅
A	D ₁	G	A	T	С
M ₀		M ₂	M ₃	M ₄	М ₅

Example of Alignment

		Sequence 1			ce 1
A	S	Т	R	A	L
			Viter	rbi p	ath
M ₀	\mathbf{M}_{1}	M ₂	M ₃	M ₄	\mathbf{M}_{5}
Α	S	Т	R	A	L
		5	Sequ	Jend	e 2

			Sequence 2			
	Α	S	Т	Α	Ι	L
				Viter	bi p	ath
M ₀	\mathbf{M}_{1}	M ₂	D_3	M_4	I_4	M_5
A	S	Т		A	I	L

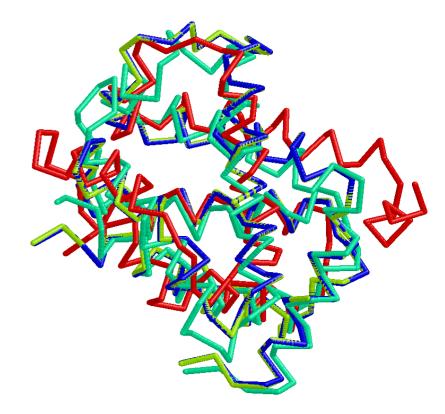
Alignment Calculation

M ₀ A	M ₁ S	M ₂ T	M ₃ R	M ₄ A		M ₅ L	Sequence 1
M ₀ A	M ₁ S	M ₂ T	D ₃	M ₄ A	I ₄ I	M ₅ L	Sequence 2
M ₀ A	M ₁ R	M ₂ T	D ₃	D4		M ₅ I	Sequence 3

Gro	oupir	ng b	y ve	ertica	al laye	ers	Alignment
	0	1	2	3	4	5	
\mathbf{S}_1	А	S	Τ	R	А	L	ASTRA-L
S ₂	А	S	Т		AI	L	AST-AIL
S ₃	А	R	Т			I	ARTI

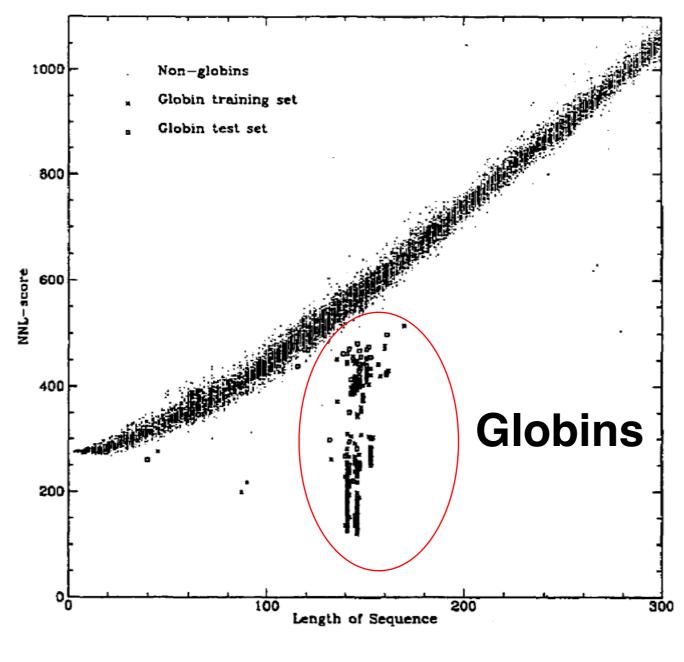
-Log P(s I M) Is an alignment score

Alignment of Globins



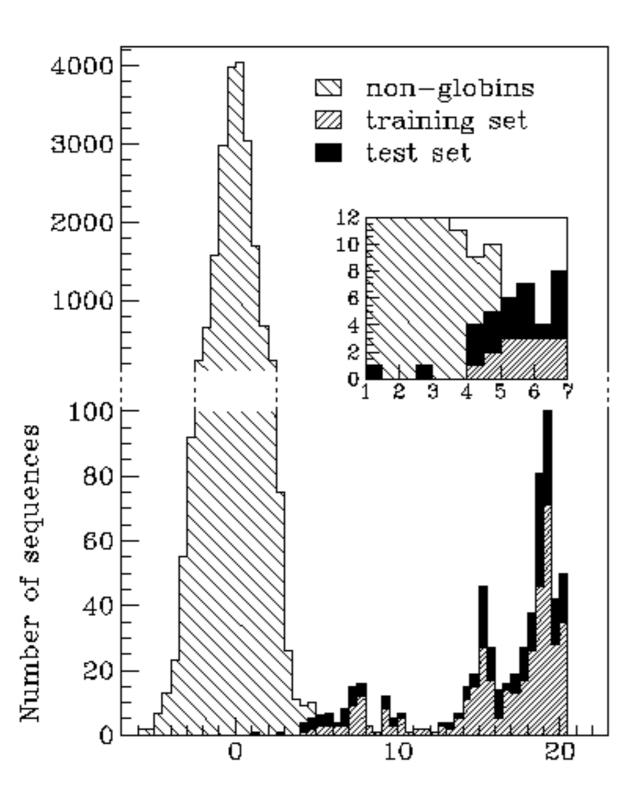
-----VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF-DL -----VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESFGDL -----VLSEGEWQLVLHVWAKVEA--DIAGHGQDILIRLFKHHPETLEKFDRFKHL -----LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKFTQFAG-PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKFKGL -----GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-FLK------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-FSG-

NFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-----NFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-----YLEFISEAIIHVLHSRHPADFGADAQGAMSKALELFRKDIAAKYKELGYQG QLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-----YFKVLAAVIADTVAAG-----DAGFEKLMSMICILLRSAY-----HFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---YFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS----


Globins HMM

HMM are calculate from a training set of 400 unaligned sequences. After the HMM is built, it is used to obtain a multiple alignment of all the training sequences. This is the alignment of the 7 globins as aligned with the trained model.

ААААААААААААААА		DDD
*****	*****	
VLSPADKTNVKAAWGKVGA. VhLTPEEKSAVTALWGKV VLSEGEWQLVLHVWAKVEA. LSADQISTVQASFDKV PivdtgsvapLSAAEKTKIRSAWAPVYS. GaLTESQAALVKSSWEEFNA. GLSAAQRQVIAATWKDIAGa	.HAGEYGAEALERMFLSFPTTKTYF .NVDEVGGEALGRLLVVYPWTQRFF .DVAGHGQDILIRLFKSHPETLEKF .KGDPVGILYAVFKADPSIMAKF .TYETSGVDILVKFFTSTPAAQEFF .NIPKHTHRFFILVLEIAPAAKDLF	PHFD-L ESFGDL DRFKHL TQFAGK PKFKGL SFLK-G
DDDDDDDEE EEEEEEEEEEEEEEEEE	F	FFFFG GGGG **
SHGSAQVKGH-GKKVADALTNAVA		חיזם דאש
STPDAVMGNPKVKA.HGKKVLGAFSDGLA		
KTEA-EMKASEDLKkHGVTVLTALGAILK		
DLES-IKGTAPFET.HANRIVGFFSKIIG		
TTADQLKKSADVRW.HAERIINAVNDAVA		
TSEVPQ-NNPELQA.HAGKVFKLVYEAAI		
SGASDPGVAA.LGAKVLAQIGVAVS		
GGGGGGGGGGGGGGGGGG HHHHHH	ННННННННННННН	
*****	* * * * * * * * * * * * * * * * *	
PVNFKLLSHCLLVTLAAHLPAEFTPAVHA	SLDKFLASVSTVLTSKYR	
PENFRLLGNVLVCVLAHHFGKEFTPPVQA		
IKYLEFISEAIIHVLHSRHPGDFGADAQG	211	
HDQLNNFRAGFVSYMKAHTDF-AGAEA		
PQYFKVLAAVIADTVAAGDA DAHFPVVKEAILKTIKEVVGAKWSEELNS		
AQYFEPLGASLLSAMEHRIGGKMNAAAKD		
UÄTT DI DOVOTOPUOLIUTOOUUIUVVUID		


Globin Classification

The NLL-score is calculated to discriminate between Globin and non-Globin protein sequences

NLLscore = $-\log P(sIM)$

Score distribution

$$Z\text{-score} = \frac{\text{NLL}(s) - \langle \text{NLL} \rangle}{\sigma \text{ (NLL)}}$$

With mean and standard deviation computed on sets of sequences with similar length

Confusion Matrix

A 2x2 matrix for calculating the performance of prediction methods

		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative		
Test	Test outcome positive	True positive	False positive (Type I error)		
outcome	Test outcome negative	False negative (Type II error)	True negative		

How many predictions are correct on the overall?

Accuracy (ACC):

$$ACC = \frac{(TP+TN)}{(TP+FN+TN+FP)}$$

Is it an informative enough score?

Dataset Unbalance

Accuracy can be strongly biased because of class unbalance. It is not very informative

	Class 1	Class -1
Prediction 1	90	10
Prediction -1	0	0

Acc = 0.9 ALL the examples are predicted in the class 1: Very bad predictions

	Class 1	Class -1
Prediction 1	81	1
Prediction -1	9	9

Acc = 0.9

It seems a much more reasonable prediction

Class Specific Measures

Sensitivity (Sn) or
True Positive Rate
(TPR):
$$Sn = \frac{TP}{TP+FN}$$

It answer to the question:

How many of the real positive examples are correctly predicted?

Precision or Positive
Predictive Value (PPV):
$$PPV = \frac{TP}{TP+FP}$$

It answer to the question:

How many of the positive predictions are correct?

It is sometimes referred as Specificity

Matthews Correlation

Matthews Correlation Coefficient (MCC):

$$MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$

It answer to the question:

Is the prediction really correlated with the real classes?

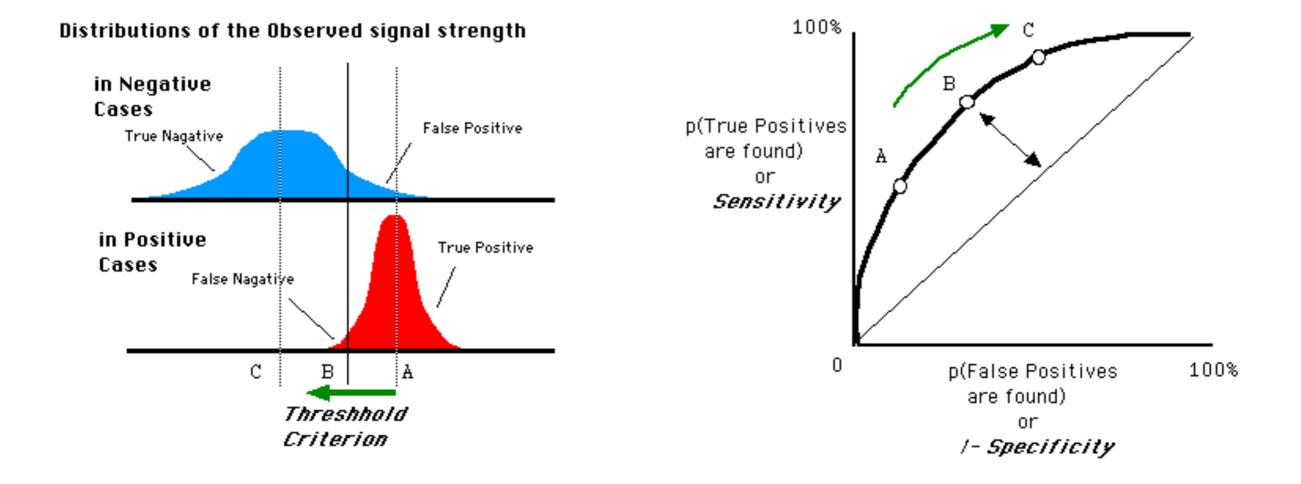
It is 0 in case of random prediction It is 1 only in case of perfect prediction It is -1 only in case of completely wrong prediction

It is the Pearson's correlation coefficient for categorical classes

MCC and Unbalance

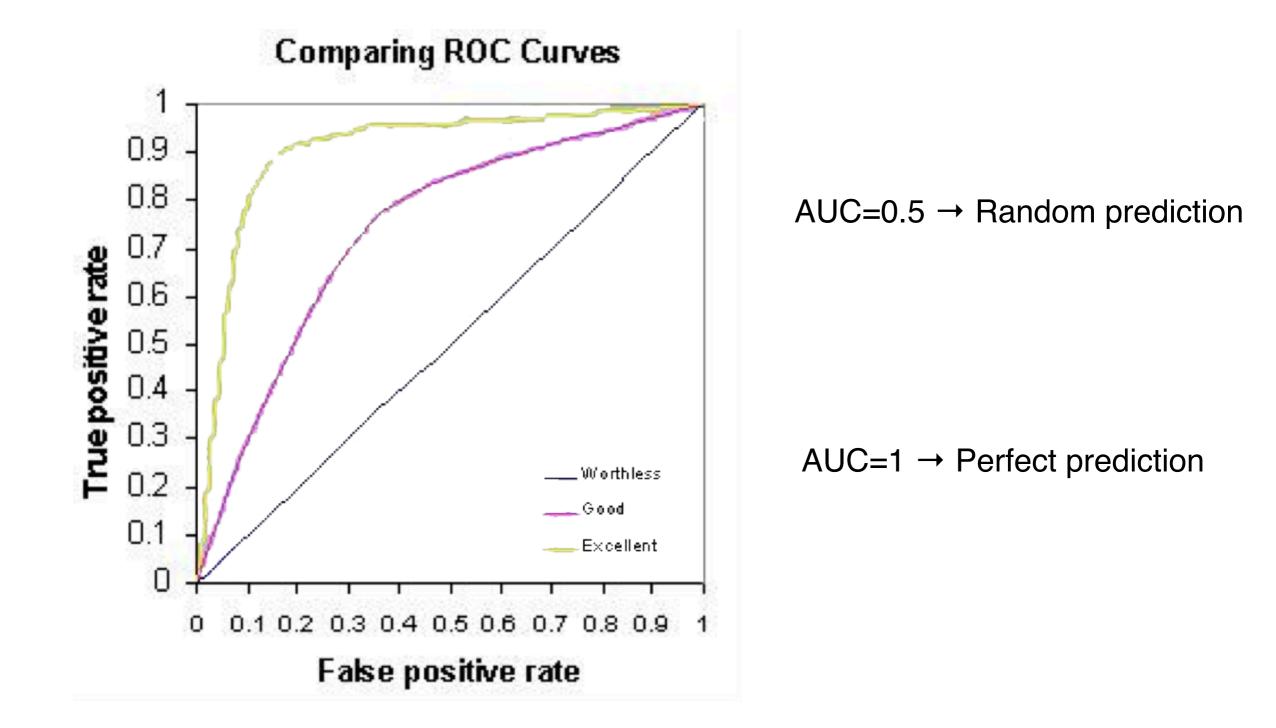
MCC is not affected by dataset unbalance

	Class 1	Class -1
Prediction 1	90	10
Prediction -1	0	0


Acc = 0.9 All the examples are predicted in the class 1: MCC = 0.0 Very bad predictions

	Class 1	Class -1
Prediction 1	81	1
Prediction -1	9	9

Acc = 0.9 MCC = 0.62 Predictions are good


ROC Curve

The Receiver Operating Characteristics depends on a parameter, TPR and FPR can be plotted at varying values of the parameter

Area Under Curve

The Area Under the ROC Curve (AUC) is used to measure the perforce of a predictor

