
Emidio Capriotti !
http://biofold.org/emidio

Division of Informatics!
Department of Pathology

Computers and!
Programming Languages

CB2-101 – Introduction to Scientific Computing!
 

November 10, 2014

http://bass.uib.es/emidio

Basic Computer Architecture
• A basic computer is composed by CPU, Memory or RAM, storage support

and I/O peripherals. !
!

• The CPU (central processing unit) is the hardware that executes the basic
arithmetical, logical, and input/output operations of the system.!

!

• RAM (Random Access Memory) is normally associated with volatile types
of memory, where its information are stored and lost when the power is
removed. !
!

• Secondary memory is the slowest form of memory. It cannot be processed
directly by the CPU. It must first be copied into primary storage. It include
magnetic disks like hard drives and optical disks.!

> for i in `seq 1 100000`!
do!
echo $i >> /dev/shm/nums.txt!
done

Test your RAM

> for i in `seq 1 100000`!
do!
echo $i >> ~/nums.txt!
done

> time (for i in `seq 1 100000`; do echo $i >> /dev/shm/nums.txt; done)!
!
> time (for i in `seq 1 100000`; do echo $i >> ~/nums.txt; done)

What is the time needed to execute the two commands?!

Write on your hard-drive memory!

Write on your RAM memory!

How much space?
A bit is the basic unit of information in computing and digital communications. !
It is a binary number that corresponds to two states generally represented with
0 and 1.!
!
The byte is most common unit of digital information in computing that consists
of eight bits. !
!

> top

What your computer is doing? !

> df -H —total

How show the disk space in your machine?!

> free -h

How show the amount of RAM in your machine?!

Boolean Algebra

 IF (boolean condition) THEN!
 (consequent)!
 ELSE!
 (alternative)!
 END IF

The generic structure of conditional statements is:!

Boolean algebra is a part of mathematics for the manipulation of
binary variables that can assume true and false values, usually
denoted 1 and 0 respectively.!
!
Thew basic operations in the Boolean Algebra are:!
!
NOT, AND, OR.!

All the calculation performed by the computer can be write using the basic Boolean
operations.!
!
Boolean operations and conditional statements are extensively used in
programming

Statements in Bash
 >if [statement]; !
 then!
 ! (consequent)!
 else!
 ! (alternative)!
 fi

In the bash shell the syntax of a conditional statement is the following: !

Statements can be combined with operators ! (NOT), && (AND), || (OR)

 >if [`zcat 9606.tsv.gz |wc -l` -gt 3]!
 then!
 ! echo 9606.tsv.gz `zcat 9606.tsv.gz|wc -l`!
 else!
 ! echo “ERROR: file 9606.tsv.gz too short” >/dev/stderr!
 fi

An example: verify that Human PFAM file (9606.tsv) has more than 3 lines.!

Exercise 1
Write a bash script that takes in input the name of a fasta file with only one sequence
and check !!
1. if the file exists!
2. if the file has a one line header in the first line!
3. Write a shell script that takes in input the file name and check 1 and 2!
!
Download the following files using wget!
! http://www.uniprot.org/uniprot/P53_HUMAN.fasta !
! http://www.uniprot.org/uniprot/BRCA1_HUMAN.fasta

 > if [-f namefile] …

IF option -f to check if the file exists!

To find the header use the command grep and caret (^) on the first line using head

> grep ^\> …..! ! # Searches for the character > on the first column

Concatenate two expression in the if statement

> if [expression] && [expression 2] then ….

http://www.uniprot.org/uniprot/P53_HUMAN.fasta
http://www.uniprot.org/uniprot/BRCA1_HUMAN.fasta

Algorithm and program
Algorithm is a step by step procedure used for to solve a calculation problem.!
The number of step should be finite.!
!

Why algorithms?!
!
The complexity of a problem is proportional to the number of calculations needed to
solve a computational problems and is given as a function of the number of variables.!
!
Problems in computer science can be classified as NP-hard vs NP-Complete. NP
means nondeterministic polynomial time. NP-Complete problems can be verified in
polynomial time. Most of the problem are NP-hard. One example is the “Traveling
Salesman Problem”.!
!
Algorithms are developed to optimize the solution of the problem. !
!
In some cases we need to find heuristics that although the provide a solution close to
the exact one in a polynomial time.!
!
A program is computer program is a specific implementation of an algorithm or set of
algorithms that running ia a computer provide the solution of a computational problem.

Program Languages

• A programming language is an artificial language to communicate
instructions to a machine, particularly a computer. !
!

• Programming languages can be used to develop programs and to
express algorithms.!
!

• Programming languages usually relies on imperative and declarative
forms.!
!

• A programming language is usually described by two components: the
syntax (form) and the semantics (meaning). !

Classification

The main categories of program languages are compiled and interpreted.!
!
A compiled language is a programming language whose implementations
are typically compilers which generate machine code (object code) from
source code.!
!
An interpreted language is a programming language that executes
instructions directly, without previously compiling a program into machine-
language instructions.

Abstraction level

A low-level programming language provides little or no abstraction from a
computer's instruction set architecture. Very machine specific and difficult to
use, but can be very fast.!
!
!
A high-level programming language has strong abstraction from the details
of the computer. In comparison to low-level programming languages, it less
dependent from computer architecture more easy to understand but needs
to be compiled or interpreted.

Assembly
Hello world in assembly!

hello.s!
! .section .data!
hello:!!
! .ascii ! "Hello, world!\n"!
hello_len:!
! .long ! . - hello!
! .section .text!
! .globl _start!
_start:!
! ## display string using write () system call!
! xorl %ebx, %ebx! ! # %ebx = 0!
! movl $4, %eax!! ! # write () system call!
! xorl %ebx, %ebx! ! # %ebx = 0!
! incl %ebx! ! ! # %ebx = 1, fd = stdout!
! leal hello, %ecx! ! # %ecx ---> hello!
! movl hello_len, %edx! ! # %edx = count!
! int $0x80! ! ! # execute write () system call!
! ## terminate program via _exit () system call !
! xorl %eax, %eax! ! # %eax = 0!
! incl %eax! ! ! # %eax = 1 system call _exit ()!
! xorl %ebx, %ebx! ! # %ebx = 0 normal program return code!
! int $0x80! ! ! # execute system call _exit ()

Compile Assembly
1. Generating the Object Code

> as -o hello.o hello.s

2. Link Object File!

> ld -o hello hello.o

3. Run the program making it executable!

> chmod a+x hello!
> ./hello!
> Hello, world!

Compile C program
1. Write the code in the hello.c file

#include <stdio.h>!
!
int main(void)!
{!
 printf("Hello world\n");!
 return 0;!
}

3. Run the program making it executable!

> chmod a+x hello!
> ./hello!
> Hello, world!

2. Generating executable file

> gcc -o hello_c hello.c

Run the python script
1. Write the python script in the hello.py file

#!/usr/bin/python!
!
print "Hello, world!"

2. Run the script making it executable!

> chmod a+x hello.py!
> ./hello.py!
> Hello, world!

3. Make the script consistent with C
#!/usr/bin/python!
!
def main():!
! print "Hello, world!”!
! return!
!
main()

Another command
AWK
data extraction from text file

2. Example: extract column 1 from file 9606.tsv.gz

> zcat 9606.tsv.gz | awk -F “\t” ‘{print $1}’

BEGIN { do something 1 }!
!
 ! { do something 2 }!
!
END { do something 3 }

1. Basic structure

3. Use if statement to print rows with “Family” in position 8

> zcat 9606.tsv.gz | awk -F “\t” ‘{if ($8==“Family”) print $0}’

Exercise 2
Write a command line using awk that from 9606.tsv.gz file selects!!
1. rows with “Family” in position 8!
2. E-value in position 13 lower than 1e-10

 > awk ‘{ if (expression1 && expression2) do something }’

Use the AND operator (&&) to solve this problem!

Concatenate three expressions in the IF statement calculating the difference
between columns 3 and 2

 > awk ‘{ if (($3-$2)>threshold && expression1 && expression2) do something }’

Restrict the search selecting domains with alignment length >=100

