
Emidio Capriotti
http://biofold.org/emidio

Division of Informatics
Department of Pathology

Files and Data Structure

CB2-101 – Introduction to Scientific Computing
 

November 12th, 2014

http://bass.uib.es/emidio

• In computer science, a data structure is a particular way of storing and
organizing data in a computer to be used efficiently.

• Data structure is one of the key issue in programming, in particular
nowadays when we are in the Big Data era.

• Big data is defining the current situation where we need to deal with
datasets so huge and complex that it becomes difficult to process using
traditional tools and/or data processing applications.

• As a consequence the decision about which is the best structure to
represent and/or store your data is crucial.

Data structure

List
One way to represent a group of data in python is the list.

A list or sequence is a data type that implements a finite ordered
collection of values.

List in python
>>> mylist=[3, 4, 5, 11, 9]
>>> print mylist[2]
5
>>> print mylist[1:3]
[4, 5]
>>> mylist[-1]
9
>>> mylist[1]=‘a’
>>> print mylist
[3, ’a’, 5, 11, 9]
>>> print mylist+[True]
[3, ’a’, 5, 11, 9, True]
>>> mylist.append(True)
[3, ’a’, 5, 11, 9, True]

Tuple
Like for a list, a tuple consists of a number of values separated by
commas.

Tuple in python
>>> mytuple=3, 4, 5, 11,”Text”
>>> print mytuple
(3, 4, 5, 11,”Text”)
>>> len(mytuple)
5
>>> x, y, z = mytuple[:3]
>>> print mytuple+(1,)
(3, 4, 5, 11, ”Text”, 1)
>>> mytuple.append(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'
>>> mytuple[0]=1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Variables and pointers
Python variable reference assignment

>>> x= 1
>>> y=x
>>> x=2
>>> print x, y
2 1

More complex variable types described by pointers
>>> mat1= [[1, 0],[0, 1]]
>>> mat2= mat1
>>> mat1[0][0]=0
>>> print mat1, mat2
[[0, 0], [0, 1]] [[0, 0], [0, 1]]
>>> import copy
>>> mat2=copy.deepcopy(mat1)
>>> mat1[0][0]=1
>>> print mat1, mat2
[[1, 0], [0, 1]] [[0, 0], [0, 1]]

For regular variables the reference assignment works as expected

Files (I)

Most important method in on the object file in read mode

>>> f=open(‘file.txt’,’r’)
>>> cont = f.read()
>>> print cont
Hello world! Emidio Malay

Creating a file object in python
f=open(filename,mode) # object file f is associated to filename

In python files are represented as objects:

modes are: read ('r'), write ('w'), and append ('a').

Most important methods on the object file in write mode

>>> f=open(‘file.txt’,’w’)
>>> f.write(“Hello world!”) # The argument is a string
>>> f.writelines([‘ Emidio’, ‘ Malay’]) # The argument is a list
>>> f.close()

Files (II)
Use readlines for reading file

>>> f=open(‘file.txt’,’r’)
>>> cont = f.readlines()
>>> print cont
[‘Hello world! Emidio Malay’]

In text file you can have special characters “\t” tab and “\n” newline

File object are similar to a stack
>>> f=open(‘file.txt’,’r’)
>>> print f.read(5)
‘Hello’
>>> print f.read(50)
‘ world! Emidio Malay’
>>> print f.read(50)
‘’

String module
To better work with strings python as a string module that can be
also imported

Interesting methods on a string object
>>> import string
>>> text=“Hello World!\n”
>>> print text.upper()
‘HELLO WORLD!’

>>> text.split()
[‘Hello’, ‘World!’]
>>> text.replace(‘Hello’, ‘Ciao’)
“Ciao World!\n”
>>> text.find(“World”)
5
>>> text.rstrip(‘\n’)
“Ciao World!”

Exercise I.a

Use special characters and convert the integer to string.

def write_friend(filename,f_list):
f=open(filename,’r’)
for name,age in f_list: # tuple unpacking

f.write(name+’ \t’+str(age)+’\n’) # variable casting
f.close()

if (__name__ == “__main__”):
f_list=[(‘Pietro’, 42), (‘Zef’, 42), (‘Tommy’, 43)]
write_friend(“friend_file.txt”,f_list)

Write a script that write in a file the name of three of your friends
and their ages. Each friend will be recorded in one line and where
first appears the name and the age is separated by a tab.
Names and ages are given through a list of 2-dimensional tuples.

f_list=[(‘Pietro’, 42), (‘Zef’, 42), (‘Tommy’, 43)]

Exercise I|.a

The program can be run from command line with two arguments
import sys
 
def get_col_values(filename,position):

vdata=[]
lines=open(filename,’r’).readlines()
for line in lines:

vec=line.rstrip(‘\n’).split()
vdata.append(float(vec[position-1]))

return data

def mean(v):
return sum(v)/len(v)

if (__name__ == “__main__”):
filename=sys.argv[1]]
col=int(sys.argv[2])
v=get_col_values(filename,col)
print “Averege age:”, mean(v)

Check if the previous file has been correctly written. Read the file and
calculate the mean value of the your friends’ age using a returning a float
value. Write the program in the general for that allows to calculate the mean
value of a set of number in a a given column of the file

A good practice

An alternative is to import the module fileinput
import fileinput
for line in fileinput.input(['myfile']):
 do_something(line)

It is a good programing practice when you open a file to read one line at
the time. To avoid that huge file can make your machine crashing.

Read one line at the time the friend_file.txt file
>>> c=0
>>> with open(‘friend_file.txt’,’r’) as fobj:
… for line in fobj:
… c=c+1
… print c,line.rstrip()
1 Pietro 42
2 Zef 42
3 Tommy 43

Read one line at the time
with open(filename,’r’) as fobj:

for line in fobj:
do_something(line)

Dictionary
Dictionaries are not ordered lists indexed by keys, which can be
any immutable type; strings and numbers can always be keys.
Tuples can be used as keys if they contain only strings, numbers, or
tuples.

The list used in the previous exercise can be stored as a dictionary

>>> fdic= {‘Pietro’:42, ‘Zef’: 42, ‘Tommy’: 43}
>>> print fdic[‘Pietro’]
42
>>> print fdic.get(‘Pietro’,0)
42
>>> print fdic.get(‘Goofy’,0)
0
>>> print fdic.keys()
[‘Pietro’,’Zef’,’Tommy’]
>>> print fdic.values()
[42, 42, 43]
>>> for key,value in fdic.iteritems():

print key, value
>>> dic= {(0,True):1, (0:False):2, (1,True):3, (1:False):4}
>>> print dic[(0,True)]

Exercise 2
Write the code in python that analyze the 9606.tsv file and selects
1. rows with “Family in position 8
2. E-value in position 13 lower than 1e-10

 > if (expression1 and expression2): do something

Use the and operator to solve this problem

Concatenate three expressions in the IF statement calculating the difference
between columns 3 and 2

 > if ((v[3]-v[2])>threshold and expression1 and expression2) do something

Restrict the search selecting domains with alignment length >=100

More exercises

1. Write a python script that takes in input a fasta file of only one protein sequence
and calculate the frequency of each amino acid. Check the output of
P53_HUMAN.fasta and BRCA1_HUMAN.fasta.

2. Write a code that analyze a fasta file with multiple sequences and calculate the
length of each sequence. Save the results in a file.

3. Write a script that analyze the 9606.tsv file and build a dictionary using as key
the ID of the protein and value the corresponding list of domains. The program
will be called using the name of the protein.

