
Basic Local Alignment Search 
Tool (BLAST)

If you learn just one thing Bioinformatics 
just learn this:



BLAST programs

blastp: protein 

blastn: DNA





Where,  

= a score cutoff 
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Example BLAST output

http://www-bimas.cit.nih.gov/blastinfo/
blastexample.html

http://www-bimas.cit.nih.gov/blastinfo/blastexample.html


BLOSUM62



Find the score of PQG 
matching PQG using 

BLOSUM62



Homologs

Genes related by evolution.



Orthologs

Ancestor Gene

Gene 1 Gene 2

Speciation

Orthologs

Gene 11 Gene 12 Gene 21 Gene 22

Out Paralogs

In ParalogsIn Paralogs



Fitch W. (1970). "Distinguishing 
homologous from analogous proteins". 
Syst Zool 19 (2): 99–113.

http://www.ncbi.nlm.nih.gov/pubmed?term=5449325


Ortholog determination

Fundamental for comparative genomics



Open problem 

No clear winner





Ortholog determination

Sequence similarity based clustering

Tree based

Hybrid approach



Sequence similarity

Pioneered by “COG”

Reciprocal Best Hit (usually BLAST)

Additional clustering on top of RBH 
(OrthoMCL)

Numerous databases: COG, eggNOC, 
OrthoMCL, InParanoid...



Proteins 
from 

Genome 1

Proteins 
from 

Genome 2

All vs All BLAST



Reciprocal Best BLAST Hit

Protein A Protein B



Orthologs

Nothing to do with function!



Homology vs Homoplasy



Cluster of orthlogous groups 
(COG) 

http://www.ncbi.nlm.nih.gov/COG/

a b

Genome A Genome B

c
Genome C

http://www.ncbi.nlm.nih.gov/COG/


InParanoid 
http://inparanoid.sbc.su.se/cgi-bin/index.cgi

a b
Genome A Genome B

Inparalogs Inparalogs

http://inparanoid.sbc.su.se/cgi-bin/index.cgi


Download BLAST

ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.25/



Creating a BLAST DB from a 
multifasta file

formatdb	  -‐i	  multifasta



BLASTP

blastall	  -‐i	  input.fas	  -‐d	  dbname	  
-‐o	  outputfile



Position Specific Scoring 
Matrix (PSSM)

Nca = real count 

bca = pseudo count 

Nc = total real count 

Bc = total pseudo count 

Bc = 

1 2 3 4

Seq1 A G G A

Seq2 A G G G

Seq3 A A C A

Seq4 A A C G

M U L T I P L E  S E Q U E N C E  A L I G N M E N T ■ 193

it is desirable to improve the estimates of the amino acid frequencies by adding extra amino
acid counts, called pseudocounts, to obtain a more reasonable distribution of amino acid
frequencies in the column. Knowing how many counts to add is a difficult but fortunately
solvable problem. On the one hand, if too many pseudocounts are added in comparison to
real sequence counts, the pseudocounts will become the dominant influence in the amino
acid frequencies, and searches using the motif will not work. On the other hand, if there are
relatively few real counts, many amino acid variations may not be present because of the
small sample of sequences. The resulting matrix would then only be useful for finding the
sequences used to produce the motif. In such a case, the pseudocounts will broaden the evo-
lutionary reach of the profile to variations in other sequences. Even in this case, the pseu-
docounts should not drown out but serve to augment the influence of the real counts. In
summary, relatively few pseudocounts should be added when there is a good sampling of
sequences, and more should be added when the data are more sparse.

The goal of adding pseudocounts is to obtain an improved estimate of the probability
pca that amino acid a is in column c in all occurrences of the blocks, and not just the ones
in the present sample. The current estimate of pca is fca, the frequency of counts in the data.
A simplified Bayesian prediction improves the estimate of pca by adding prior information
in the form of pseudocounts (Henikoff and Henikoff 1996):

where nca and bca are the real counts and pseudocounts, respectively, of amino acid a in col-
umn c, Nc and Bc are the total number of real counts and pseudocounts, respectively, in the
column, and fca ! nca /Nc. It is obvious that as bca becomes larger, the pseudocounts will
have a greater infuence on pca. Furthermore, not only the types of pseudocounts but also the
total number added to the column (Bc) will influence pca. Finally, fractions such as pca are
used to produce the log odds form of the motif matrix, the PSSM, which is the most suit-
able representation of the data for sequence comparisons. A count and probability of zero
for an amino acid a in a given column, which is quite common in blocks, may not be con-
verted to logarithms. Addition of a small number of bca will correct this problem without
producing a major change in the PSSM values. An equation similar to Equation 7 is used in
the Gibbs sampler (p. 177), except that the number of sequences is N " 1.

Pseudocounts are added based on simple formulas or on the previous variations seen in
aligned sequences. The amino acid substitution matrices, including the Dayhoff PAM and
BLOSUM matrices, provide one source of information on amino acid variation. Another
source is the Dirichlet mixtures derived as a posterior probability distribution from the
amino acid substitutions observed in the BLOCKS database (see HMMs; Sjölander et al.
1996).

One simple formula that has worked well in some studies is to make B in Equation 7
equal to √N, where N is the number of sequences, and to allot these counts to the amino
acids in proportion to their frequencies in the sequences (Lawrence et al. 1993; Tatusov et
al. 1997). As N increases, the influence of pseudocounts will decrease because √N will
increase more slowly. The main difficulties with this method are that it does not take into
account known substitutions of amino acids in alignments and the observed amino acid
variations from one column in the motif to the next, and it does not add enough pseudo-
counts when the number of sequences is small.

The information in scoring matrices may be used to produce an average sequence pro-
file, as illustrated in Figure 4.12. Rather than count amino acids, the scoring table values
are averaged between each possible 20 amino acids and those amino acids found in the col-

pca ! (nca # bca) / (Nc # Bc ) (7)
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Pseudo-counts

• Some observed frequencies usually equal 0. This is a consequence of the limited
number of sequences that is present in a MSA.

• Unfortunately, an observed frequency of 0 might imply the exclusion of the
corresponding residue at this position (this was the case with patterns).

• One possible trick is to add a small number to all observed frequencies. These
small non-observed frequencies are referred to as pseudo-counts.

• From the previous example with a pseudo-counts of 1:

• Column 1: f 0
A,1 = 0+1

5+20 = 0.04, f 0
G,1 = 5+1

5+20 = 0.24, ...

• Column 2: f 0
A,2 = 0+1

5+20 = 0.04, f 0
H,2 = 5+1

5+20 = 0.24, ...

• ...

• Column 15: f 0
A,15 = 2+1

5+20 = 0.12, f 0
C,15 = 1+1

5+20 = 0.08, ...

• There exist more sophisticated methods to produce more “realistic” pseudo-
counts, and which are based on substitution matrix or Dirichlet mixtures.

19
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How to build a PSSM

• A PSSM is based on the frequencies of each residue in a specific position
of a multiple alignment.

0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

5  0  0  2  0  5  1  0  1  0  2  3  1  1  0

0  0  5  0  1  0  0  0  1  0  0  0  0  1  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  1  0  0  0  0  0  0  1  0  2  0  0

0  0  0  0  0  0  0  0  0  0  0  2  1  0  2

0  0  0  0  1  0  0  1  0  1  1  0  0  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  0  1  0  1  0  0
0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  0  0  0  0  0  1  0  0  0  0  0

0  0  0  0  1  0  0  1  1  0  0  0  0  0  0
0  0  0  0  0  0  1  1  0  0  0  0  0  0  0

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0  0  0  0  1  0  1  0  0  0  0  0  0  1  0

0  0  0  1  1  0  1  1  0  1  0  0  0  0  0

0  5  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  0  1  0  0  0  0  1  0  0  0  0  0  0

0  0  0  0  0  0  0  0  1  0  0  0  0  1  0

0  0  0  0  0  0  0  0  0  1  0  0  0  0  1

Jalview Michele Clamp 1998

sp|P54202|ADH2_EMENI
sp|P16580|GLNA_CHICK
sp|P40848|DHP1_SCHPO
sp|P57795|ISCS_METTE
sp|P15215|LMG1_DROME
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W
Y

• Column 1: fA,1 = 0
5 = 0, fG,1 = 5

5 = 1, ...

• Column 2: fA,2 = 0
5 = 0, fH,2 = 5

5 = 1, ...

• ...

• Column 15: fA,15 = 2
5 = 0.4, fC,15 = 1

5 = 0.2, ...
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Computing a PSSM

• The frequency of every residue determined at every position has to be compared
with the frequency at which any residue can be expected in a random
sequence.

• For example, let’s postulate that each amino acid is observed with an identical
frequency in a random sequence. This is a quite simplistic null model.

• The score is derived from the ratio of the observed to the expected frequencies.
More precisely, the logarithm of this ratio is taken and refereed to as the log-
likelihood ratio:

Scoreij = log(f 0
ij

qi
)

where Scoreij is the score for residue i at position j, f

0
ij is the relative

frequency for a residue i at position j (corrected with pseudo-counts) and qi
is the expected relative frequency of residue i in a random sequence.

20
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Example

• The complete position specific scoring matrix calculated from the previous
example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 1.3 0.7 -0.2 1.3
C -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7
D -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
E -0.2 -0.2 2.3 -0.2 0.7 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7 -0.2
F -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
G 2.3 -0.2 -0.2 1.3 -0.2 2.3 0.7 -0.2 0.7 -0.2 1.3 1.7 0.7 0.7 -0.2
H -0.2 2.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
I -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7
K -0.2 -0.2 -0.2 0.7 0.7 -0.2 0.7 0.7 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2
L -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 1.3 -0.2 -0.2
M -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2
N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
P -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 0.7 -0.2 -0.2
Q -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
R -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 0.7 -0.2 0.7 0.7 -0.2 -0.2 -0.2 -0.2
S -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 0.7 -0.2
T -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
V -0.2 -0.2 -0.2 -0.2 0.7 -0.2 -0.2 0.7 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
W -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
Y -0.2 -0.2 -0.2 -0.2 0.7 -0.2 0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.7 -0.2
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How to use PSSMs

• The PSSM is applied as a sliding window along the subject sequence:

• At every position, a PSSM score is calculated by summing the scores of all columns;

• The highest scoring position is reported.

T -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
V -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 

    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 

Y -0.2 -0.2 -0.2 -0.2  0.7 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2
W -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 

D -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2

Y -0.2 -0.2 -0.2 -0.2  0.7 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2

S -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 
R -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2  0.7 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 
Q -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
P -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2  0.7 -0.2 -0.2 
N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
M -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 
L -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2  1.3 -0.2 -0.2 
K -0.2 -0.2 -0.2  0.7  0.7 -0.2  0.7  0.7 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 
I -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 
H -0.2  2.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
G  2.3 -0.2 -0.2  1.3 -0.2  2.3  0.7 -0.2  0.7 -0.2  1.3  1.7  0.7  0.7 -0.2
F -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
E -0.2 -0.2  2.3 -0.2  0.7 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 

W -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
V -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 

A -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  1.3  0.7 -0.2  1.3 

A -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  1.3  0.7 -0.2  1.3 
C -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 
D -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
E -0.2 -0.2  2.3 -0.2  0.7 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 
F -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
G  2.3 -0.2 -0.2  1.3 -0.2  2.3  0.7 -0.2  0.7 -0.2  1.3  1.7  0.7  0.7 -0.2
H -0.2  2.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
I -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 
K -0.2 -0.2 -0.2  0.7  0.7 -0.2  0.7  0.7 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 
L -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2  1.3 -0.2 -0.2 
M -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 
N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
P -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2  0.7 -0.2 -0.2 
Q -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
R -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2  0.7 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 
S -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 
T -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
V -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
W -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
Y -0.2 -0.2 -0.2 -0.2  0.7 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2

C -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 

    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 

H -0.2  2.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 

    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
A -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  1.3  0.7 -0.2  1.3 

R -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2  0.7 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 
Q -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
P -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2  0.7 -0.2 -0.2 

C -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 
D -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
E -0.2 -0.2  2.3 -0.2  0.7 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 
F -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
G  2.3 -0.2 -0.2  1.3 -0.2  2.3  0.7 -0.2  0.7 -0.2  1.3  1.7  0.7  0.7 -0.2

T -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
S -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 

N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
M -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 
L -0.2 -0.2 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 -0.2  1.3 -0.2 -0.2 
K -0.2 -0.2 -0.2  0.7  0.7 -0.2  0.7  0.7 -0.2  0.7 -0.2 -0.2 -0.2 -0.2 -0.2 
I -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2  0.7 

Position +1

Position +1

Score = 0.3

T S G H E L V G G V A F P A R C A S

Score = 0.6

Score = 16.1

T S G H E L V G G V A F P A R C A S

T S G H E L V G G V A F P A R C A S
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These shortcomings of PSSMs set the stage for a new kind of profile, 
based on Markov chains, called Hidden Markov models (HMMs)

‣ modeling positional dependencies
‣ recognizing pattern instances with indels
‣ modeling variable length patterns
‣ detecting boundaries



PSSM search

rpsblast can be used to search a PSSM. 

NCBI Conserved Domain Database (CDD) is 
a collection of PSSMs.



Markov process

No	  state	  information	  

Memoryless



Markov ChainsMarkov chains

Markov chains are stochastic processes that undergo transitions between a 
finite series of states in a chainlike manner.

The system transverses states with probability  
         p(x1, x2, x3, ...) = p(x1) p(x2| x1) p(x3| x2) p(x4| x3)...

• i.e. Markov chains are memoryless: the probability that the chain is in state xi 
at time t, depends only on the state at the previous time step and not on the 
past history of the states visited before time t−1. 

• This specific kind of "memorylessness" is called the Markov property.

The Markov property states that the conditional probability distribution 
for the system at the next step (and in fact at all future steps) depends 
only on the current state of the system, and not additionally on the state 
of the system at previous steps.

x1 x2 x3 x4 x5

Markov chains

Markov chains are stochastic processes that undergo transitions between a 
finite series of states in a chainlike manner.

The system transverses states with probability  
         p(x1, x2, x3, ...) = p(x1) p(x2| x1) p(x3| x2) p(x4| x3)...

• i.e. Markov chains are memoryless: the probability that the chain is in state xi 
at time t, depends only on the state at the previous time step and not on the 
past history of the states visited before time t−1. 

• This specific kind of "memorylessness" is called the Markov property.

The Markov property states that the conditional probability distribution 
for the system at the next step (and in fact at all future steps) depends 
only on the current state of the system, and not additionally on the state 
of the system at previous steps.

Markov Chains are memory less: 
probability of a state depends only on the 

previous state



Markov chains are defined as a state 
diagram

Markov chains...

Markov chains, and their extension hidden Markov models (HMMs), are commonly 
represented by state diagrams, which consist of states and connecting transitions

A transition probability parameter (aij) is associated with each transition (arrow) and 
determines the probability of a certain state (Sj) following another state (Si).

A T

C G

•E.g., A general Markov chain modeling DNA. 
Note that any sequence can be traced 
through the model by passing from one state 
to the next via the transitions.

A Markov chain is defined by:
• a finite set of states, S1, S2 ...SN
• a set of transition probabilities: aij = P(qt+1=Sj|qt=Si)
• and an initial state probability distribution, πi = P(q0=Si)

Markov chains...

Markov chains, and their extension hidden Markov models (HMMs), are commonly 
represented by state diagrams, which consist of states and connecting transitions

A transition probability parameter (aij) is associated with each transition (arrow) and 
determines the probability of a certain state (Sj) following another state (Si).

•E.g., A general Markov chain modeling DNA. 
Note that any sequence can be traced 
through the model by passing from one state 
to the next via the transitions.

A Markov chain is defined by:
• a finite set of states, S1, S2 ...SN
• a set of transition probabilities: aij = P(qt+1=Sj|qt=Si)
• and an initial state probability distribution, πi = P(q0=Si)

http://thegrantlab.org/

http://thegrantlab.org/


Simple Markov chain example for x={a,b}

Observed sequence: x = abaaababbaa

Model:

P(x) = 0.5 x 0.3 x 0.5 x 0.7 x 0.7 x 0.3 x 0.5 x 0.3 x 0.5 x 0.5 x 0.7

SStart 
probs

     a!0.5
     b!0.5πi

Prev! Next! Prob

  a!   a! 0.7

  a!   b! 0.3

  b!   a! 0.5

  b!   b! 0.5

aiji j
transition 
probabilities

initial state 
probability 
distribution

Q. Can you sketch the state diagram with labeled transitions for this model?

Markov chains example

http://thegrantlab.org/



Markov chain exampleMarkov chains:  3. Boundary detection

Giving a sequence we wish to label each symbol in the sequence according to its 
class (e.g. transmembrane regions or extracellular/cytosolic)

Membrane
(hydrophobic)

Extracellular

Cytosol

Given a training set of labeled sequences we can begin by modeling each amino 
acid as hydrophobic (H) or hydrophilic (L) 
i.e. reduce the dimensionality of the 20 amino acids into two classes

E.g., A peptide sequence can be represented as a sequence of Hs and Ls.
e.g. HHHLLHLHHLHL...

tend to be hydrophobic in composition

Markov chains: boundary detection...

A simpler question: is a given sequence a transmembrane sequence?

A Markov chain for recognizing transmembrane sequences

• States: SH, SL 
• Σ={H,L}
• π(H) = 0.6, π(L) = 0.4

0.30.7

0.7

0.3

P(HHLHH) = 0.6 x 0.7 x 0.7 x 0.3 x 0.7 x 0.7 = 0.043

Question: Is sequence HHLHH a transmembrane protein?

Problem: need a threshold,
threshold must be length dependent

http://thegrantlab.org/

http://thegrantlab.org/


Markov chains: boundary detection

We can classify an observed sequence (O = O1, O2, ...) by its log odds ratio

H L 0.30.7

0.7

0.3

In other words, it is more than twice as likely that HHLHH is a 
transmembrane sequence. The log-odds score is: log2(2.69) = 1.43

H L 0.50.5

0.5

0.5

transmembrane model null model

• π(H) = 0.6, π(L) = 0.4 • π(H) = 0.5, π(L) = 0.5

P(HHLHH | TM)     0.6 x 0.7 x 0.7 x 0.3 x 0.7 x 0.7     0.043
P(HHLHH | EC)     0.5 x 0.5 x 0.5 x 0.5 x 0.5 x 0.5     0.016

= 2.69==

Extracellular/cytosolic (E/C)Transmembrane (TM)

http://thegrantlab.org/



Markov chain Parameter 
estimation

Side note: Parameter estimation...

Both initial probabilities (π(i))and transition probabilities (aij) are determined from 
known examples of transmembrane and non-transmembrane sequences. 

H L 0.30.7

0.7

0.3

HHHLLHHHLLLHLHLLHLLLHLHHHL  
HHHLHHLHLLLLLHHHHLLLHHHHHL
HH... (AHL = 12,  AH* = 40)

aHL =
AHL

AHi
i
∑

    #HL pairs  . 

# H* pairs

• π(H) = 0.6, π(L) = 0.4

     12    . 

40

π(H) = # of sequences that begin with H,
normalized by the total # of training 
sequences

http://thegrantlab.org/



HMM:  
Given a sequence of H and L find 

the transmembrane region 

Boundary detection challenge

Given sequence of Hs and Ls, find all transmembrane regions:
• Using our Markov models we would still need to score successive overlapping 

windows along the sequence, leading to a fuzzy boundary (just as with a 
PSSM).

To approach this question we can construct a new four state model by adding 
transitions connecting the TM and E/C models

HM LM 0.20.6
0.6

0.4
HE/C LE/C0.4 0.4

0.4

0.2
0.10.1 0.1 0.1

Transitions between the M states and 
the E/C states indicate boundaries 
between membrane regions and 
cytosolic or extracellular regions.

However this is no longer a standard 
Markov chain! 

So whats hidden?

We will distinguish between the observed parts of the problem and the hidden 
parts
• In the Markov models we have considered previously it is clear which states 

account for each part of the observed sequence
• Due to the one-to-one correspondence between symbols and states

• In our new model, there are multiple states that could account for each part of 
the observed sequence

• i.e. we don’t know which state emitted a given symbol from knowledge of the 
sequence and the structure of the model

‣ This is the hidden part of the problem 

0.20.6
0.6

0.4
0.4 0.4

0.4

0.2
0.10.1 0.1 0.1

http://thegrantlab.org/



For our Markov models 
• Given HLLH..., we know the exact state sequence (q0=SH, q1=SL, q2=SL, ...)

For our HMM
• Given HLLH..., we must infer the most probable state sequence
• This HMM state sequence will yield the boundaries between likely TM and E/C 

regions 

HM LM 0.20.6
0.6

0.4
HE/C LE/C0.4 0.4

0.4

0.2
0.10.1 0.1 0.1

HM, LM, LM, HM
HM, LM, LM, HE/C
HM, LM, LH/C, HM
HM, LM, LH/C, HE/C
HM, LE/C, LM, HM
HM, LE/C, LM, HE/C
HM, LE/C, LH/C, HM,
HM, LE/C, LH/C, HE/C,
HE/C, LM, LM, HM
HE/C, LM, LM, HE/C
HE/C, LM, LH/C, HM
HE/C, LM, LH/C, HE/C
HE/C, LE/C, LM, HM
HE/C, LE/C, LM, HE/C
HE/C, LE/C, LH/CM, HM
HE/C, LE/C, LH/CM, HE/C

http://thegrantlab.org/



Hidden Markov models (HMMs)

Markov Chains
• States: S1, S2 ...SN

• Initial probabilities: πi

• Transition probabilities: aij

Hidden Markov Models
• States: S1, S2 ...SN

• Initial probabilities: πi

• Transition probabilities: aij

• Alphabet of emitted symbols, ∑
• Emission probabilities: ei(a)  

probability state i emits symbol a

One-to-one correspondence 
between states and symbols

Symbol may be emitted by more 
than one state

Similarly, a state can emit more 
than one symbol

http://thegrantlab.org/



Example three state HMM

In this example we will use only one state for the transmembrane segment (M) and 
use emission probabilities to distinguish between H and L residues. We will also 
add separate E & C states with distinct emission probabilities.

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

0.7 0.3 0

0.25 0.5 0.25

0 0.3 0.7

aij = 

Example three state HMM

In this example we will use only one state for the transmembrane segment (M) and 
use emission probabilities to distinguish between H and L residues. We will also 
add separate E & C states with distinct emission probabilities.

0.50.7

0.25

0.3

0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

0.7 0.3 0

0.25 0.5 0.25

0 0.3 0.7

aij = 

Side note: Parameter estimation

As in the case of Markov chains, the HMM parameters can be learned from 
labeled training data 

Note that we now have to learn the initial probabilities, transition probabilities and 
emission probabilities 

aij =
Aij
Aij 'j '∑

ei (x) =
Ei (x)
Ei (x ')x

'∑

E M C

πi 0 0 1

ei(H) 0.2 0.9 0.3

ei(L) 0.8 0.1 0.7

0.50.7

0.25

0.3

0.7

0.25

0.3
Side note: Parameter estimation

As in the case of Markov chains, the HMM parameters can be learned from 
labeled training data 

Note that we now have to learn the initial probabilities, transition probabilities and 
emission probabilities 

aij =
Aij
Aij 'j '∑

ei (x) =
Ei (x)
Ei (x ')x

'∑

E M C

πi 0 0 1

ei(H) 0.2 0.9 0.3

ei(L) 0.8 0.1 0.7

0.50.7

0.25

0.3

0.7

0.25

0.3

Side note: Parameter estimation

As in the case of Markov chains, the HMM parameters can be learned from 
labeled training data 

Note that we now have to learn the initial probabilities, transition probabilities and 
emission probabilities 

aij =
Aij
Aij 'j '∑

ei (x) =
Ei (x)
Ei (x ')x

'∑

E M C

πi 0 0 1

ei(H) 0.2 0.9 0.3

ei(L) 0.8 0.1 0.7

0.50.7

0.25

0.3

0.7

0.25

0.3

http://thegrantlab.org/



H H L L H

E

M

C

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

π(E) = 0 
π(M) = 0 
π(C) = 1

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

M 0x0.9
=0

C 1x0.3
=0.3

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

π(E) = 0 
π(M) = 0 
π(C) = 1

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

M 0x0.9
=0

C 1x0.3
=0.3

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

π(E) = 0 
π(M) = 0 
π(C) = 1

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

-

M 0x0.9
=0

0.3x0.9x0.3
=0.081

C 1x0.3
=0.3

0.7x0.3x0.3
=0.063

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

-

M 0x0.9
=0

0.3x0.9x0.3
=0.081

C 1x0.3
=0.3

0.7x0.3x0.3
=0.063

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

-

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

-

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START C

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

START

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START C M

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3

0.7x0.3.0.3
=0.063

0.25x0.7x0.081
=0.014

- -

START C M E

States

Query Sequence

E M 0.50.7

0.25

0.3

C 0.7

0.25

0.3

ei
H   0.9
L   0.1

ei
H   0.2
L   0.8

ei
H   0.3
L   0.7

http://thegrantlab.org/



H H L L H

E 0x0.2
=0

- 0.25x0.8x0.081
=0.016

0.7x0.8x0.016
=0.009

0.7x0.2x0.009
=0.001

M 0x0.9
=0

0.3x0.9x0.3
=0.081

0.5x0.1x0.081
=0.04

0.3x0.1x0.016
=0.0005

0.3x0.9x0.009
=0.002

C 1x0.3
=0.3
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Viterbi Algorithm



Patterns, Profiles, HMMs, PSI-BLAST Course 2003

HMMs are trained from a multiple
alignment
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ENDBEGIN

I0

E 0.44
D 0.41
C 0.01
A 0.01
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Hidden Markov ModelLVPI is calculated by multiplying the emission and transition probabilities
along the path.

Start End

L

V P I

0.4

0.3

0.46

0.6

0.3

0.4

0.3

0.6

0.5

Figure 6: A possible hidden Markov model of protein LVPI. The numbers
in the box indicates the emission probabilities and numbers next to arrows
indicate transition probabilities. The probability of the protein LVPI is show
in bold.

In Figure 6 the probability of L being emitted in the position 1 is 0.3; V
at position 2 is 0.6. Probability of the full sequence can be calculated as:

0.4× 0.3× 0.46× 0.6× 0.3× 0.4× 0.3× 0.6× 0.5 = 0.00035

In a real life situation the path through a model in not known. In that
case the correct probability of any sequence is the sum of the probabilities
over all of the possible state paths. Unfortunately, the brute force calcula-
tion of this problem is computationally unfeasible. A possible alternative
is to calculate this inductively by forward algorithm or to calculated the
most probable path using Viterbi algorithm. The emission and transition
probabilities are calculated using Baum-Welch method.

6.3 Generalized hidden Markov model and GenScan

Generalized hidden Markov model (GHMM) is a type of HMM where each
state may not be a single symbol but can be a string of finite length. That
means the full gene structure can be used with each part of a gene like,
5’ UTR, exon, intron, 3’UTR can be modeled. GenScan is a software for
gene prediction which uses GHMM. GenScan is the most popular of all the
gene finding programs for eukaryotic genome. Important feature of GenScan
include:

1. Identification of complete intron/exon structures of a gene in genomic
DNA.
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HMMER3

http://hmmer.janelia.org	  

cd	  ~/Desktop/h<tab>	  

cd	  binaries	  

sudo	  cp	  *	  /usr/bin/

http://hmmer.janelia.org


Creating a HMM model of p53 

Align:	  

muscle	  -‐stable	  -‐in	  infile	  -‐out	  outfile	  

Create	  HMM:	  

hmmbuild	  -‐-‐informat	  afa	  p53.hmm	  
outfile	  

Search	  human	  genome:	  

hmmsearch	  -‐o	  hits.txt	  p53.hmm	  
human.faa



HMMER result

#	  hmmsearch	  ::	  search	  profile(s)	  against	  a	  sequence	  database	  
#	  HMMER	  3.0	  (March	  2010);	  http://hmmer.org/	  
#	  Copyright	  (C)	  2010	  Howard	  Hughes	  Medical	  Institute.	  
#	  Freely	  distributed	  under	  the	  GNU	  General	  Public	  License	  (GPLv3).	  
#	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  
#	  query	  HMM	  file:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  PF00870.hmm	  
#	  target	  sequence	  database:	  	  	  	  	  	  	  	  PF00870_full_length_sequences-‐1.fasta	  
#	  output	  directed	  to	  file:	  	  	  	  	  	  	  	  	  result.out	  
#	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  -‐	  

Query:	  	  	  	  	  	  	  PF00870	  	  [M=612]	  
Scores	  for	  complete	  sequences	  (score	  includes	  all	  domains):	  
	  	  	  -‐-‐-‐	  full	  sequence	  -‐-‐-‐	  	  	  -‐-‐-‐	  best	  1	  domain	  -‐-‐-‐	  	  	  	  -‐#dom-‐	  
	  	  	  	  E-‐value	  	  score	  	  bias	  	  	  	  E-‐value	  	  score	  	  bias	  	  	  	  exp	  	  N	  	  Sequence	  	  	  	  	  Description	  
	  	  	  	  -‐-‐-‐-‐-‐-‐-‐	  -‐-‐-‐-‐-‐-‐	  -‐-‐-‐-‐-‐	  	  	  	  -‐-‐-‐-‐-‐-‐-‐	  -‐-‐-‐-‐-‐-‐	  -‐-‐-‐-‐-‐	  	  	  -‐-‐-‐-‐	  -‐-‐	  	  -‐-‐-‐-‐-‐-‐-‐-‐	  	  	  	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐	  
	  	  	  	  	  6e-‐226	  	  746.2	  	  22.8	  	  	  7.3e-‐226	  	  745.9	  	  15.8	  	  	  	  1.0	  	  1	  	  P63_MOUSE	  	  	  	  (O88898)	  
	  	  	  7.7e-‐226	  	  745.8	  	  21.8	  	  	  9.7e-‐226	  	  745.5	  	  15.1	  	  	  	  1.0	  	  1	  	  P63_RAT	  	  	  	  	  	  (Q9JJP6)	  
	  	  	  1.7e-‐225	  	  744.7	  	  	  4.7	  	  	  3.5e-‐225	  	  743.6	  	  	  3.2	  	  	  	  1.5	  	  1	  	  P73_HUMAN	  	  	  	  (O15350)	  
	  	  	  1.6e-‐224	  	  741.5	  	  23.2	  	  	  	  	  2e-‐224	  	  741.2	  	  16.1	  	  	  	  1.0	  	  1	  	  P63_HUMAN	  	  	  	  (Q9H3D4)	  
	  	  	  	  	  2e-‐223	  	  737.9	  	  20.5	  	  	  2.2e-‐223	  	  737.7	  	  14.2	  	  	  	  1.0	  	  1	  	  Q3UVI3_MOUSE	  (Q3UVI3)	  
	  	  	  1.5e-‐222	  	  735.0	  	  	  3.4	  	  	  4.3e-‐222	  	  733.4	  	  	  2.3	  	  	  	  1.6	  	  1	  	  P73_CERAE	  	  	  	  (Q9XSK8)	  
	  	  	  2.1e-‐222	  	  734.5	  	  20.2	  	  	  2.3e-‐222	  	  734.3	  	  14.0	  	  	  	  1.0	  	  1	  	  Q5CZX0_MOUSE	  (Q5CZX0)	  
	  	  	  2.1e-‐221	  	  731.1	  	  34.0	  	  	  2.4e-‐221	  	  731.0	  	  23.6	  	  	  	  1.0	  	  1	  	  C4Q601_SCHMA	  (C4Q601)	  

http://hmmer.org


PFAM readymade HMM 
library


