
Emidio Capriotti
http://biofold.org/

Institute for Mathematical Modeling
of Biological Systems

Department of Biology

Basics in  
Scientific Computing

Master-Module Biological Networks
July 22, 2016

http://bass.uib.es/emidio

Python
• Python high-level programming language. Its design philosophy

emphasizes code readability, and allows programmers to express
concepts in few lines of code.

• Python is an object-oriented language supporting imperative and
functional programming.

• Object-oriented programming that represents concepts as "objects"
that have data fields (attributes) and associated procedures known as
methods.

• Python implementation was started at the end of 1989 by Guido van
Rossum. Python 2.0 was released in 2000, with new features including
a full garbage collector and support for Unicode.

The interpreter

To exit from the interpreter environment Ctrl+D or exit()

The interpreter can be accessed typing python in the shell
emidio-imac:data emidio$ python
Python 2.7.6 (default, Nov 23 2013, 23:57:52)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

The interactive interpreter: ipython
emidio-imac:data emidio$ ipython-2.7
Python 2.7.6 (default, Nov 23 2013, 23:57:52)
Type "copyright", "credits" or "license" for more information.

IPython 0.13.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]:

Basic variable types
The simplest type of variable in programming is the boolean

>>> bit=True
>>> type(bit)
<type 'bool'>

The simplest numeric variable is integer
>>> inum=1
>>> type(inum)
<type 'int'>

More complex numeric variable is float
>>> fnum=1.5
>>> type(fnum)
<type 'float'>

In python character variable does not exist.
>>> text=‘Hello World’
>>> type(text)
<type 'str'>

String variables

Python provides built-in functions for dealing with string
>>> text=“Hello world!”
>>> print len(text)
12
>>> print text[0]
H
>>> print text[-1]
!
>>> print text[2:5]
llo

In low level program languages the string is not a basic variable. It
is actually a group of concatenated characters.

In programming languages such as fortran the length of a string is
fix. In python a string can assume any length and it do not need to
be declared.

Convert variable types

Few example about how to modify variable type
>>> fnum=5.6
>>> int(fnum)
5
>>> inum=4
>>> float(inum)
4.0
>>> text=“1024”
>>> int(text)
1024

• In python variables are not explicitly declared and are defined
instantiation. 

• Variable types can be converted. This procedure is referred as
variable casting.

• In python changing the variable type can be a source of error.

Standard operators
The standard operators for numeric variables are:

>>> 2+2
4
>>> 2-2
0
>>> 2*3
6
>>> 7/2
3
>>>7%2
1
>>>2**3
8

Some of these operators works also for strings
>>> ‘a’+’b’
‘ab’
>>> 2*’a’
‘aa’

Function
Function is a set of statements to perform a task.

def name(list of variables):
statements

The function consists of two parts: the header and the body.

• The header contains the name and the list of variables

• The body contains the set of statements and is indented

The order of the statements defines the flow of execution.

A function can not be called before it has been defined

Example write a function that write a name.
>>> def print_name(name):
… print “My name is’,name
…
>>> print_name(‘Emidio’)
My name is Emidio

if and operators

Write a function that check names for length and first characters
>>> def check_name(name,name_len,letter):
… if (len(name>=name_len and name[0]==letter):
… return True
… else:
… return False
…
>>> print chech_name(‘Goofy’,5,’G’)
True

Basic structure of if in python. Also elif can be used.
if (condition 1):

do something 1
elif (condition 2):

do something 2
else:

do something 3

Standard operators are ==, !=, >, >=, <, <= that can be combined
with and, or, not

for and while loops

Build a function that takes a text variable and print all the letters
>>> def print_for_letters(text):
… for i in text:
… print i

>>> def print_while_letters(text):
… i=0
… while i<len(text):
… print text[i]
… i+=1

Basic structure of the for and while loop in python.
for i in list:

do something # Indentation is needed

while (condition):
do something # Indentation is needed

Important modules
The module sys

access to some variables used or maintained by the interpreter and to
functions that interact strongly with the interpreter.

>>> import sys
>>> sys.argv[0]

The module math

provide standard mathematics functions

>>> import math
>>> math.pi
3.141592653589793

>>> math.sqrt(2)
>>> 1.4142135623730951

• In computer science, a data structure is a particular way of storing and
organizing data in a computer to be used efficiently.

• Data structure is one of the key issue in programming, in particular
nowadays when we are in the Big Data era.

• Big data is defining the current situation where we need to deal with
datasets so huge and complex that it becomes difficult to process using
traditional tools and/or data processing applications.

• As a consequence the decision about which is the best structure to
represent and/or store your data is crucial.

Data structure

List
One way to represent a group of data in python is the list.

A list or sequence is a data type that implements a finite ordered
collection of values.

List in python
>>> mylist=[3, 4, 5, 11, 9]
>>> print mylist[2]
5
>>> print mylist[1:3]
[4, 5]
>>> mylist[-1]
9
>>> mylist[1]=‘a’
>>> print mylist
[3, ’a’, 5, 11, 9]
>>> print mylist+[True]
[3, ’a’, 5, 11, 9, True]
>>> mylist.append(True)
[3, ’a’, 5, 11, 9, True]

Tuple
Like for a list, a tuple consists of a number of values separated by
commas.

Tuple in python
>>> mytuple=3, 4, 5, 11,”Text”
>>> print mytuple
(3, 4, 5, 11,”Text”)
>>> len(mytuple)
5
>>> x, y, z = mytuple[:3]
>>> print mytuple+(1,)
(3, 4, 5, 11, ”Text”, 1)
>>> mytuple.append(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'
>>> mytuple[0]=1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Variables and pointers
Python variable reference assignment

>>> x= 1
>>> y=x
>>> x=2
>>> print x, y
2 1

More complex variable types described by pointers
>>> mat1= [[1, 0],[0, 1]]
>>> mat2= mat1
>>> mat1[0][0]=0
>>> print mat1, mat2
[[0, 0], [0, 1]] [[0, 0], [0, 1]]
>>> import copy
>>> mat2=copy.deepcopy(mat1)
>>> mat1[0][0]=1
>>> print mat1, mat2
[[1, 0], [0, 1]] [[0, 0], [0, 1]]

For regular variables the reference assignment works as expected

Files (I)

Most important method in on the object file in read mode

>>> f=open(‘file.txt’,’r’)
>>> cont = f.read()
>>> print cont
Hello world! Emidio Malay

Creating a file object in python
f=open(filename,mode) # object file f is associated to filename

In python files are represented as objects:

modes are: read ('r'), write ('w'), and append ('a').

Most important methods on the object file in write mode

>>> f=open(‘file.txt’,’w’)
>>> f.write(“Hello world!”) # The argument is a string
>>> f.writelines([‘ Emidio’, ‘ Malay’]) # The argument is a list
>>> f.close()

Files (II)
Use readlines for reading file

>>> f=open(‘file.txt’,’r’)
>>> cont = f.readlines()
>>> print cont
[‘Hello world! Emidio Malay’]

In text file you can have special characters “\t” tab and “\n” newline

File object are similar to a stack
>>> f=open(‘file.txt’,’r’)
>>> print f.read(5)
‘Hello’
>>> print f.read(50)
‘ world! Emidio Malay’
>>> print f.read(50)
‘’

String module
To better work with strings python as a string module that can be
also imported

Interesting methods on a string object
>>> import string
>>> text=“Hello World!\n”
>>> print text.upper()
‘HELLO WORLD!’

>>> text.split()
[‘Hello’, ‘World!’]
>>> text.replace(‘Hello’, ‘Ciao’)
“Ciao World!\n”
>>> text.find(“World”)
5
>>> text.rstrip(‘\n’)
“Ciao World!”

Dictionary
Dictionaries are not ordered lists indexed by keys, which can be
any immutable type; strings and numbers can always be keys.
Tuples can be used as keys if they contain only strings, numbers, or
tuples.

The list used in the previous exercise can be stored as a dictionary

>>> fdic= {‘Pietro’:42, ‘Zef’: 42, ‘Tommy’: 43}
>>> print fdic[‘Pietro’]
42
>>> print fdic.get(‘Pietro’,0)
42
>>> print fdic.get(‘Goofy’,0)
0
>>> print fdic.keys()
[‘Pietro’,’Zef’,’Tommy’]
>>> print fdic.values()
[42, 42, 43]
>>> for key,value in fdic.iteritems():

print key, value
>>> dic= {(0,True):1, (0:False):2, (1,True):3, (1:False):4}
>>> print dic[(0,True)]

Exercise

1. Consider the human proteins TP53 and PRIO and find for both of them the
interacting partners in human using IntAct

2. For the interacting gene set extract all the Gene Ontology terms from the
goa_human.gaf.gz file and sort them by their occurrence.

3. Look to the function indicated with the code GO:0004674. To which function
does it correspond? Is the set of TP53 interactors enriched for this function?

