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Polar residue hot spots have been observed at protein–protein bind-
ing sites. Here we show that hot spots occur predominantly at the
interfaces of macromolecular complexes, distinguishing binding sites
from the remainder of the surface. Consequently, hot spots can be
used to define binding epitopes. We further show a correspondence
between energy hot spots and structurally conserved residues. The
number of structurally conserved residues, particularly of high rank-
ing energy hot spots, increases with the binding site contact size. This
finding may suggest that effectively dispersing hot spots within a
large contact area, rather than compactly clustering them, may be a
strategy to sustain essential key interactions while still allowing
certain protein flexibility at the interface. Thus, most conserved polar
residues at the binding interfaces confer rigidity to minimize the
entropic cost on binding, whereas surrounding residues form a
flexible cushion. Furthermore, our finding that similar residue hot
spots occur across different protein families suggests that affinity and
specificity are not necessarily coupled: higher affinity does not di-
rectly imply greater specificity. Conservation of Trp on the protein
surface indicates a highly likely binding site. To a lesser extent,
conservation of Phe and Met also imply a binding site. For all three
residues, there is a significant conservation in binding sites, whereas
there is no conservation on the exposed surface. A hybrid strategy,
mapping sequence alignment onto a single structure illustrates the
possibility of binding site identification around these three residues.

protein–protein interfaces � hot spots � molecular recognition �
binding site prediction � residue conservation

R inge (1) has raised the question ‘‘what makes a binding site a
binding site?’’ Many studies have addressed this intriguing and

vastly important problem. Being able to a priori predict binding sites
would both limit the conformational search in drug design, facilitate
the prediction of protein–protein interactions (2), and may provide
leads to binding site design.

A number of studies have examined the attributes of protein-
binding sites (3–5). Although binding sites on enzyme surfaces
typically consist of a concave cleft shape (6, 7) and similarly small
ligand binding sites on receptor surfaces (8), this is not the case for
the larger protein–protein complexes (9–12). Enzyme-binding sites
were shown to frequently be the largest cavities on the enzyme
surface (6, 7). On the other hand, the shape of dimer-binding sites
is usually quite flat (9) and practically indistinguishable from other
patches on the protein surface. Native binding sites do not yield the
largest possible interfaces between two protein molecules. A dock-
ing study has shown that nonnative interfaces can be larger, and
bury a larger extent of total or nonpolar surface areas (13). A
similar observation has been made for the number of salt bridges
or hydrogen bonds (13, 14). Hence, although interfaces are fre-
quently largely hydrophobic and bury a large extent of nonpolar
surface area (15), the magnitude of the hydrophobic effect is
insufficient to identify binding sites. It also does not enable distin-
guishing between crystal packing interfaces versus native interfaces
(16). Fernandez and Scheraga (5) have made the remarkable

discovery that the majority of backbone hydrogen bonds are
completely wrapped intramolecularly by nonpolar groups except for
a few likely to be around the binding site. The insufficiently
dehydrated hydrogen bonds may be dramatically stabilized on
binding.

Alanine scanning of protein–protein interfaces has shown that
the binding free energy is not equally distributed at the binding
interface. Rather, there are hot spots of binding energy consisting
of a subset of residues at the interface (17, 18). Systematic analysis
has found the hot spots to be particularly enriched in Trp, Tyr, and
Arg. These were largely surrounded by hydrophobic rings, probably
to occlude bulk solvent (19). Because of the significance of hot spots
in protein interaction and drug discovery, unraveling hot spots in
binding interfaces continues to stimulate interest, with both
progress and challenges (18).

There are two major computational approaches to understand
the binding hot spots: energetic evaluation and structural analysis.
Computational alanine scanning using extensive molecular me-
chanics Poisson–Boltzmann surface area (MM-PBSA) calculations
(20) as well as a simple physical model (21) reproduced successfully
experimental energy changes. Monte Carlo evaluation of the en-
ergy landscape of hot spots (22) indicates that evolutionary con-
vergent binding sites (23) correspond to the energetically most
favorable states. However, there are different interpretations of the
specific energy contribution. Kortemme and Baker (21) demon-
strated that the hydrogen bonding term contributes significantly to
the correct prediction of hot spots. In the Verkhivker et al. study
(22), hydrophobic interactions were found to be critical.

Structural analysis of the protein–protein surface also provided
insights into the binding hot spots. Hu et al. (24) have analyzed
families of related interfaces (25, 26). Their analysis has confirmed
and extended the results of Bogan and Thorn, showing that binding
sites are enriched in polar residue hot spots. The Hu et al. analysis
(24) sought residue conservation in structurally similar environ-
ments. Other structural analyses using conservation probability
(27) or graph-spectral methods (28) also indicate the significance
of conserving important interactions on homodimeric protein
interfaces.

Nevertheless, none of these studies resolved the important ques-
tion of whether the hot spots distinguish between the interfaces and
the remainder of the surface. The main goal of the present work is
to answer the question of the portion of the conserved residues in
the interface over the exposed surface. We compare the conser-
vation patterns at the binding sites versus the remainder of the
surface. We are able to carry out such a study owing to MUSTA,
our newly developed multiple structure comparison algorithm
(29, 30).

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: MUSTA, multiple structure alignment.
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We find that structurally conserved residues distinguish between
binding sites and exposed protein surfaces. For three residues (Trp,
Phe, and Met), there is a significant conservation in binding sites,
whereas there is no conservation on the exposed surface.

Methods
The initial dataset of interfaces with 1,629 two-chain interface
entries in the Protein Data Base (25, 31) has been clustered into 351
families, by using the Geometric Hashing, sequence order-
independent structural comparison algorithm. A threshold of
�90% sequence identity was imposed. A representative was taken
from each cluster, and the process was repeated with a 30–90%
sequence similarity range for the next clustering level. This proce-
dure resulted in 10 families (with at least four members), totalling
86 entries (Table 1). All are included in the study of Hu et al. (24).
The data set has a good balance of interface type, including obligate
dimers (hemoglobin and immnunoglobulins), proteinase inhibitors,
antigens, protease complexes, and hormones. Therefore, we expect
no significant bias of a specific family.

Multiple structure comparisons with the structural coordinates
being the only input, disregarding sequence and motif information,
is a difficult problem. Multiple structure alignment (MUSTA)
solves the problem while avoiding the expensive full conformational
space search (29, 30). The input consists of an ensemble of N
molecules represented by its C�-atoms coordinates. The algorithm
consists of three major stages: (i) detection of seed matches and of
candidate multidimensional transformations; (ii) clustering of the
transformations in each of the multidimensional transformation
components and extension of the seed matches corresponding to
the cluster prototypes; and (iii) computation of the highest scoring
multidimensional transformations. These induce the largest cores.
Lower ranked transformations can be obtained as well. These lead
to the smaller substructural motifs.

The surface residues have been identified by using ACCESS (32).
For each residue the surface area was calculated and compared with
that of the residue in Gly–X–Gly (33). Surface residue was defined
when its accessible surface area was �20% of the residue in the
extended conformation. The calculation was carried out on the
complex. Hence, below, the term ‘‘surface’’ is exposed surface and
does not include residues that are contact residues.

Contact residues were defined as in Tsai et al. (25). Briefly, two
residues are considered to be in contact across the interface if there
is at least a pair of atoms, one from each residue, at a distance

smaller than the sum of their vdW radii plus a threshold of 0.5 Å.
The general propensities are calculated as follows:

p1 � �ni�sum�ni����Ni�N� p2 � �si�sum�si����Ni�N�

where ni is the number of conserved residues of type i at the contact
interface, si is the number of conserved residues of type i on the
surface, Ni is the total number of residues i in the protein, and N is
the total number of amino acids in the protein. p1 and p2 measure
the propensity of the amino acid to be conserved on the interface
and exposed surface, respectively. [There was a typo in the earlier
publication of Hu et al. (24), and the sum(ni) was mistakenly
reported as total number of interface residues, whereas it should be
the total number of conserved residues, as used in the computation.]
All of the above numbers are normalized (averaged) in each family
to make them independent of the entries in each family. Therefore,
all protein families are equally weighted.

Results and Discussion
Structural Conservation on the Binding Site and the Exposed Surface.
Although there has been a number of multiple sequence alignment
algorithms, to date there have been very few approaches to multiple
structure alignment and detection of a recurring substructural
motif. Among these, very few perform both multiple structure
comparison and motif detection simultaneously, considering all
structures at the same time, rather than initiating from a pairwise
superimposed molecular seed, which can lead to a bias. These
include MUSTA (29, 30), MULTIPROT (34), and MASS (multiple
alignment of order-independent secondary structures; O. Dror, H.
Bengamini, R.N., and H.W., unpublished data). MUSTA is state
of-the-art in its capabilities. Given an ensemble of protein struc-
tures, the algorithm automatically finds the largest common sub-
structure (core) of C�-atoms that appears in all of the molecules in
the ensemble. The detection of the core and the structural align-
ment are performed simultaneously. Additional structural align-
ments are also obtained and ranked by the sizes of the substructural
motifs that are present in the entire ensemble. Because it is
independent of amino acid sequence order, it can be applied to
protein surfaces, protein–protein interfaces, and protein cores to
find the optimally and suboptimally spatially recurring substructural
motifs.

We used MUSTA to structurally align the members of each
family. For each family, when �80% family members have an
identical residue aligned within 1.0 Å, we define the residue as
conserved. Finally, the conservation propensities are computed.

Table 1. List of 10 protein interface families used in the present study

No. Family representative Members in the family Protein classification

1 1babAD 1hdsAD 1bbbBC 1bbbAD 1hdsBC Hemoglobin
2 1bbbAB 1hdsCD 1hdaCD 1pbxAB 2mhbAB 2dhbAB
3 1choEI 3sgbEI 1ppeEI 4tpiZI 1brcEI 1ppfEI Serine proteinase inhibitor

1tabEI 1tgsZI 2kaiBI
4 1cseEI 1sibEI 1meeAI 1sbnEI 2sniEI 5sicEI
5 1hhjAB 2mhaAB 1hocAB 1hsaAB 2vaaAB 1hsaDE Histocompatibility antigen
6 1hilCD 2cgrLH 2fb4LH 1bafLH 1bbdLH 1mfbLH Immunoglobulin

1dbjLH 1figLH 1gigLH 1ifhLH 2mcpLH
1mamLH 2fbjLH 2fgwLH 1cbvLH 1ggiLH
1igfMJ 1igiLH 1indLH 7fabLH 1ncbLH
1tetLH 2iffLH 3hfmLH 1dfbLH 1faiLH
1fvdAB 1gcLH

7 1vfaAB 1fvcAB 1reiAB 1fgvLH 1fvbLH 1igmLH
1jhlLH 1migLH 2fvwLH

8 1hviAB 2rspAB 1hvpAB 2mipAB 1sivAB Protease complexe
9 2gstAB 1glqAB 1guhAB 1gssAB 1hncAB Glutathione transferase
10 1izaAB 1trzAB 6rlxAB 1izaCD 6rlxCD Hormone

The data set of studied proteins.
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The results of the conservation propensities on the surface and
binding sites are reported in Table 2. Cross comparisons of the
MUSTA alignments with the experimental hot spots enrichment
and computed propensities from the previous pairwise alignment
are necessary to validate the new propensities we have obtained. As
may be seen in Fig. 1, there are very good correlations between the
current binding conservation and both the experimental data of hot
spot enrichment and the previously published binding conservation
values (24). The correlation coefficient between the current work
and our earlier work is 0.82, with an average deviation of 0.25. The
largest difference comes from Trp (2.07 in this work and 1.22 in ref.
24). It seems that our earlier work underestimated the conservation
of Trp significantly (experimental enrichment 3.91).

In general, our current work correlates with the experimental hot
spot enrichment much better than our previous work (24) did.
Following the earlier work, we use combined propensity of Leu and
Ile. Three outliers were identified previously (Val, Lys, and Trp).
However, only Lys was identified as an outlier in the current
correlation (Fig. 1a). The overall correlation with experimental hot
spots is 0.7, comparable with the previous study. As may be seen
from Fig. 1a, Glu, Gln, and Lys deviate most from the regression
line. If we were to exclude these three residues, the correlation of
the current work with the experimental hot spot enrichment would
be 0.87. As expected, there is no correlation between the surface
conservation propensity and the experimental hot spots enrich-
ment. This noncorrelation contrasts with the high correlation
between the binding sites conservation and the experimental hot
spot enrichment, and validates our approach. This is particularly
important for our studies of surfaces.

We compare the binding-site properties with those of the sur-
faces. Such a comparison should be useful in distinguishing between
binding sites and the nonbinding surface. Fig. 2a compares the
propensity of amino acids to be on the binding interface and on the
surface. Fig. 2b compares the conservation propensity of amino
acids on the two surface types. In Fig. 2b, the numbers in paren-
theses after the residue names are the experimental hot spot
enrichment by Bogan and Thorn (19).

As expected, inspection of Fig. 2a shows an overall dominant

appearance of hydrophobic residues at the interface (15). Gly and
Pro are slightly preferred on the surface. This tendency reduces in
the conservation patterns (Fig. 2b). The propensities of Phe, Met,
and Leu�Ile all drop significantly. The general propensity of Gly
and Val at the interface is similar to their conservation at the
interface. However, Pro is slightly preferred to be conserved, which
is understandable because of its unique conformation.

Val is reminiscent of the aberrant (low frequency) behavior of
Leu in the Ala scanning data (19). In Hu et al. (24) the frequency
of Leu was high and that of Ile was low. However, the sums of both
Leu and Ile in the two studies correlated well. The same situation
was observed in the current study. Val shows a slight tendency to
be at the interface (Fig. 2a). Hu et al. also observed a low Val

Fig. 1. (a) Correlation of new binding-site conservation propensities with
experimental enrichment of hot spots. (b) Correlation of new binding-site
conservation propensities with the previous work of Hu et al. (c) No correla-
tion of exposed surface conservation propensity with experimental hot spots.

Fig. 2. Propensity map of the residues to be in the binding-site contact layer
versus exposed surface (a) and conservation propensities in the binding-site
contact layer versus exposed surface (b).

Table 2. Conservation propensities and change of conservation
propensities on the binding sites exposed surfaces

Residue P�2 P�1 A B

ALA 0.90 0.63 0.94 1.14
VAL 0.36 0.70 0.88 1.09
PHE 0 1.35 0 0.87
PRO 1.64 1.37 1.23 1.14
MET 0 1.21 0 0.80
GLY 1.15 0.96 1.13 1.05
ILE 0.31 0.23 0.79 0.26
LEU 0.41 1.12 0.90 1.08
ASP 1.37 1.55 1.06 1.36
GLU 1.83 0.29 1.13 0.40
LYS 1.71 0.14 0.97 0.30
ARG 1.15 1.80 0.92 1.13
SER 1.55 0.83 1.03 1.10
THR 1.20 1.07 0.93 1.10
TYR 0.67 1.29 1.30 0.80
HIS 0.64 1.09 0.67 0.87
CYS 1.28 1.59 3.18 1.05
ASN 1.18 1.10 0.95 1.10
GLN 1.29 1.70 0.95 1.10
TRP 0 2.02 0 1.74

P�1, binding sites; P�2, exposed surfaces; A, [conservation propensities on
P�2]�[propensity on P�2]; B, [conservation propensities on P�1]�[propensity
on P�1].
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propensity at the interface. Experimentally, its hot spot enrichment
is zero (19). Hence, it appears that Val tends to be buried (either
at the interface or in the protein core) with no specific role in
binding.

The general occurrence of polar hot spots, as compared with
specific polar and nonpolar residue conservation at binding sites
such as observed in the proteases, argues to their contribution to the
binding free energy, rather than to specific binding. A similar
conclusion has been reached by Kleanthous et al. (35–37). Through
studies of DNase binding by the immunity proteins they have shown
that conserved residue hot spots (from helix III) act as a binding site
anchor, whereas the variable residues (from helix II) define spec-
ificity. Further, they find Tyr to be conserved.

Several polar residues move significantly in the binding sites:
exposed surface maps (Fig. 2). Three top ranking hot spots (Trp,
Arg, Tyr) are very interesting. Trp has only a moderate propensity
on the interface. However, its conservation propensity jumps to the
very top, corresponding to its highest ranking in experimental hot
spot enrichment. Thus, it appears that the role played by Trp is
unique, probably owing to its large size and aromatic nature (38).
Additionally, it is possible that the Trp�Ala mutation creates a large
cavity, due to the significant difference in sizes. After Trp, Arg also
gets a moderate increase in the conservation propensity. It has the
second highest conservation propensity on binding sites, also con-
sistent with experimental data. Tyr, however, shows an opposite
trend. It has a very high propensity to be on the interface, and only
a moderate conservation propensity. Even though in Fig. 2b it still
locates in the preferred binding region, the trend deserves further
investigation. A careful examination of individual propensities for
each family reveals that Tyr is the most abundant residue on the
interface for the 1hilCD and 1vfaAB families, both being immu-
noglobulins. As noted in our previous study (24), the antibody
shows a random surface distribution and tends to be less conserved.
This may explain the decrease in conservation propensity of Tyr.
Asp is the only residue that switchs from the region of exposed
surface (Fig. 2a) to the binding region (Fig. 2b). Note that it also has
a high value in experimental enrichments.

Three residues (Lys, Glu, and Ser) strongly and two (Thr and
Asn) moderately prefer to be on the surface. These five residues do
not change the propensity patterns from Fig. 2a to Fig. 2b. With
regard to Lys, an aberrant behavior was also observed in the Hu et

al. study, also with very low contact layer conservation. Lys is more
frequent on the surface than in the interface or in the contact
region. Given its high flexibility, and the fact that we multiply align
the entire chains, its deviation distance in the superposition might
have exceeded the (2.0 Å) distance threshold set in the alignment.

Overall, Fig. 2b clearly indicates that structurally conserved
residues do distinguish between binding sites and exposed protein
surfaces. Trp, the most important residue in terms of both conser-
vation and free energy change in Ala scanning is remarkably
conserved only in binding sites. Thus, the conservation of Trp on
the protein surface has a very high probability to be around a
binding site. To a lesser extent, conservation of Phe and Met also
imply a binding site. This proposition needs, however, extensive
benchmark trials. For Phe and Met, there is a significant conser-
vation in binding sites while there is no conservation on the surface.
Trp, Phe and Tyr may be conserved to ensure the structural stability
on folding and binding. One such example is Trp’s role in protecting
fragile hydrogen bonds from water (39).

Other studies also indicate the importance of aromatic residues
in protein interactions (28), consistent with our findings of the
conservation of Trp and Phe in binding sites. However, it is
interesting to see that Met also prefers binding sites over the
surface. This may be due to the fact that Met, although hydropho-
bic, still has the ability to form weak hydrogen bonds. Also, a sulfur
atom has a large polarizability, which may be useful for electrostatic
interactions around the binding sites. Verkhivker et al. (22) found
that Met residues play a significant role in the human Ig binding.
However, in that case, Met residues are critical for local confor-
mational changes during binding.

The current results indicate that multiple structural alignment
could be a valuable tool to identify possible binding sites on protein
surfaces when several related protein structures are available.
However, what if only one structure is available, along with ho-
mologous sequences? Here we test a hybrid alignment, mapping a
sequence alignment onto a single structure. As an example, let us
assume that 1bbbAB is the only structure available in the hemo-
globin family. Fig. 3 shows alignment of six sequences from the
1bbbAB family whose overall sequence identity is 37%. We identify
binding site residues (yellow) and exposed residues (green) on the
1bbbAB structure. The structurally conserved residues are marked
with red stars. Three observations may be made from the hybrid

Fig. 3. Comparison of structural align-
ment and sequential alignment of 1bbbAB
interfaces.
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alignment (1). Most structurally conserved residues around the
binding site are sequentially conserved (25 of 29), whereas less
sequentially conserved residues observed to be structurally con-
served (28 of 54) (2). Neither Phe nor Met are sequentially
conserved on the exposed surface (3). Phe and Met are conserved
in both sequence and structural alignment around the binding site.
Thus, in principle, we expect that hybrid alignment may be used to
predict binding sites combined with conservation around Trp, Phe,
and Met.

In a similar approach, evolutionary trace (ET) studies (40, 41)
have demonstrated that spatial clustering of evolutionarily impor-
tant residues is a general phenomenon (41). Friedberg and Margalit
(42) also found that the structural�functional key residues from
structural alignment show conservation in the respective sequences.
Madabushi et al. (41) used ET to rank residues in a protein sequence
by evolutionary importance and map top ranked residues or
evolutionarily privileged clusters onto a representative structure.
Good identification of binding sites is achieved in the ET study.
However, no specific information about the nature of the amino
acids was reported. A combination of ET with a focus on Trp, Phe,
and Met might be helpful in future binding site predictions.

Properties of Binding Epitopes: Structurally Conserved Residues and
Contact Area. Intermolecular binding cannot be too strong to
obstruct biological function. Yet, binding interfaces can be quite
large. A similar observation has been made for small molecule
binding (43). The question then arises as to how, despite the large
interface size, the total binding free energy does not exceed a
maximal value, set by protein function. In principle, many factors
may be involved. Here we examine the possibility that if a large
fraction of the binding free energy derives from conserved (hot
spot) residues, then their number should be limited despite the
overall large interface area. This evolutionary strategy would keep
a lid on maximal intermolecular binding affinity.

Assuming that structurally conserved residues are energy hot
spots, our results are inconsistent with such a solution. As may be
seen in Fig. 4, there is an apparent correlation between the number
of structurally conserved residues and the contact surface size,
measured by the number of contact residues. The correlation is very

strong when we only count the high ranking hot spot residues (Trp,
Arg, Tyr, Leu�Ile, Asp, His, Pro, and Lys; Fig. 4b, R � 0.77). The
correlation of polar residues (Fig. 4c) is stronger than the correla-
tion of hydrophobic residues (Fig. 4d). Thus, larger binding inter-
faces entail an increase in the number of high ranking (mostly polar)
residue hot spots. How then to reconcile this apparent contradic-
tion? First, we note that it is possible that the interface size included
in our study is not large enough to reach the plateau yet. We do see
some indication of such a plateau for the 1hilCD family (not
shown), which has an average of 166 contact residues and only 25
conserved residues. Nevertheless, this sole point does not offset the
trend observed with the other nine protein families. Here we favor
an alternative explanation: when the interface is large, packing is
not as optimal as when it is significantly smaller and backbone and
side-chain contacts may move to optimize their interactions. This
explanation is consistent with the absence of a correlation between
the binding energy and the change of side-chain contact surface for
individual residues (19). Furthermore, when a ligand interacts,
specific contacts and desolvation must be balanced to favor ligand
binding. Hence, hot spots cannot be simply clustered together in a
small contact area. Because most of the residues at the interface are
well known to be hydrophobic (15), the increase in the number of
residue hot spots with the interface size is further consistent with
the proposition made by Bogan and Thorn (19) that polar hot spots
are surrounded by hydrophobic rings. Water exclusion may lead to
a better interacting environment of the energetically hot residues
rather than provide thermodynamic stability directly.

Although here we focus on (largely polar) conserved residue hot
spots, it behooves us to note that a second important determinant
of protein-binding sites is flexibility (23, 44–46). Analyzing inter-
actions between biological molecules cannot be reduced to a static
description of molecular structures (47). Rather, the binding part-
ner should be considered, as well as the time component of the
interaction (47). The fact that multiple different molecules bind at
the same, presumably specific sites, argues for binding site dynamics
(45, 46). Effectively dispersing hot spots within a large contact area
rather than clustering them in a compact site, may be a strategy to
retain essential interactions while still allowing certain flexibility.
This may rationallize the increase in the number of conserved
residues with the increase in the contact areas. In such a mecha-
nism, most conserved polar residues at binding interfaces confer

Fig. 5. The conserved hot spots on the D chain of 1babAD interface. The hot
spots are illustrated as sticks, and for the remaining residues only the surface
is shown. Note that the carbonyl backbone atoms of the hot spots are exposed.
There is a hydrogen bond between Trp-37 and Arg-40. This arrangement is
consistent with the UDHB (under-dehydrated hybrogen bonds; see ref. 5).

Fig. 4. Correlations of the number of all conserved residues with the number
of contact residues (a), the number of high ranking hot spot (Trp, Arg, Tyr,
Leu�Ile, Asp, His, Pro, and Lys) residues with the number of contact residues
(b), the number of all conserved polar residues with the number of contact
residues (c), and the number of all conserved hydrophobic residues with the
number of contact residues (d).
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rigidity to minimize the entropic cost on binding, whereas the
residues surrounding the conserved residues form a flexible cush-
ion. One way to test such a mechanism is through studies of
fluctuation frequencies. Demirel et al. (48) used the Gaussian
network model to show that key residues in folding�function have
the highest frequencies and are more rigid. Our preliminary results
suggest that structurally conserved residues have the highest fre-
quencies (T. Haliloglu, O. Keskin, and R.N., unpublished results).
Cole and Warwicker (49) also found that a protein–protein inter-
face is less flexible than the surface, consistent with more conserved
residues on the interfaces than on surfaces.

Recently, Fernandez and Scheraga (5) have made the remark-
able observation that the hydrophobic residues in binding sites
complete the dehydration shell of binding partners. They proposed
that the under-dehydrated hydrogen bonds (UDHB) can contrib-
ute significantly to the binding energy. We have not systematically
examined this new concept to see whether the conserved hot spots
correspond to the UDHB. However, an examination of the hot
spots from the interface of the D chain of 1babAD does indicate
such a possible relationship. As shown in Fig. 5, the structurally
conserved residues have exposed backbone carbonyl atoms and
there is one hydrogen bond between Trp-37 and Arg-40. It will be
very interesting to investigate interacting partners and backbone
hydrogen bonds involving conserved hot spots.

Conclusions
The role played by hot spots in protein–protein associations and
their contribution to the interaction energy has already been
documented (17, 50). Here we show that hot spots are likely to be
conserved and that these structurally conserved residues differen-
tiate between binding sites and the remainder of the molecular
surface.

Addressing the problem of residue conservation on surfaces and
in interfaces in members of protein families necessitates a structural
comparison method that is amino acid sequence order-
independent. Furthermore, to uniquely derive the interchanges
(and conservation) within an ensemble of molecules necessitates a
multiple structure comparison method. Initiating from a pair-
alignment seed may cause a bias. Hence, MUSTA (29, 30) is well
suited to such a task, simultaneously comparing all molecules.

We find that the number of conserved polar residue hot spots is
a function of the interface size. This could either show that in our
data set this number has not yet reached a plateau or, alternatively,
it may reflect a compromise between protein interactions and
protein flexibility. The most conserved polar residues at binding
interfaces confer rigidity to minimize the entropic cost on binding,
whereas the surrounding residues provide a flexible cushion.

Although here we have analyzed a single site per protein on each
of the molecules, in vivo each protein interacts with other proteins�
ligands�cofactors on its surface. A protein should be considered in
terms of its multiple-molecule interactions. Because the secondary
sites are unknown, here we distinguished between the primary site,
defined in the crystal structure and the remainder of the molecular
surface. Our analysis did not yield particular constellations of
conserved residues with respect to each other, which could be used
as templates to search for additional sites. Nevertheless, multiple
structural superpositions yielding conserved residues on the protein
surfaces may suggest the existence of such sites. This especially
holds if one observes the conservation of Trp. From Fig. 2b, the
conservation of Trp on the protein surface indicates a highly
possible binding site. To a lesser extent, conservation of Phe and
Met also imply a binding site. For all three residues, there is a
significant conservation in binding sites, whereas there is no con-
servation on the exposed surface. Furthermore, our finding that
similar residue hot spots occur across different protein families
suggests that affinity and specificity are not necessarily coupled.

Hence, to conclude, structurally conserved residues distinguish
between binding sites and exposed protein surfaces. This finding
may have profound implications for binding-site prediction and for
drug design. Drugs can be designed not only to bind at the predicted
site, but to specifically target hot spot residues.

We thank members of the Nussinov–Wolfson structural bioinformatics
group at Tel Aviv University. We thank Drs. C.-J. Tsai and S. Kumar for
their help. We thank Dr. Jacob V. Maizel for discussions and encourage-
ment. The research of H.W. and R.N. in Israel has been supported in part
by the ‘‘Center of Excellence in Geometric Computing and Its Applications’’
funded by the Israel Science Foundation (administered by the Israel
Academy of Sciences). The research of H.W. is partially supported by the
Hermann Minkowski–Minerva Center for Geometry at Tel Aviv Univer-
sity. This project has been funded in whole or in part with Federal funds
from the National Cancer Institute, National Institutes of Health, under
Contract No. NO1-CO-12400.

1. Ringe, D. (1995) Curr. Opin. Struct. Biol. 5, 825–829.
2. Halperin, I., Ma, B., Wolfson, H. J. & Nussinov, R. (2002) Proteins 47, 409–443.
3. Schmitt, S., Kuhn, D. & Klebe, G. (2002) J. Mol. Biol. 323, 387–406.
4. Ofran, Y. & Rost, B. (2003) J. Mol. Biol. 325, 377–387.
5. Fernandez, A. & Scheraga, H. A. (2003) Proc. Natl. Acad. Sci. USA 100, 113–118.
6. Laskowski, R. A., Luscombe, N. M., Swindells, M. B. & Thornton, J. M. (1996)

Protein Sci. 5, 2438–2452.
7. Peters, K. P., Fauck, J. & Frommel, C. (1996) J. Mol. Biol. 256, 201–213.
8. Pettit, F. K. & Bowie, J. U. (1999) J. Mol. Biol. 285, 1377–1382.
9. Connolly, M. (1986) Biopolymers 25, 1229–1247.

10. Jones, S. & Thornton, J. M. (1996) Proc. Natl. Acad. Sci. USA 93, 13–20.
11. Jones, S. & Thornton, J. M. (1997) J. Mol. Biol. 272, 121–132.
12. Jones, S. & Thornton, J. M. (1997) J. Mol. Biol. 272, 133–143.
13. Norel, R., Petrey, D., Wolfson, H. & Nussinov, R. (1999) Proteins 36, 307–317.
14. Xu, D., Lin, S. L. & Nussinov, R. (1997) J. Mol. Biol. 265, 68–84.
15. Tsai, C. J., Lin, S. L., Wolfson, H. J. & Nussinov, R. (1997) Protein Sci. 6, 53–64.
16. Tsai, C. J. & Nussinov, R. (1997) Protein Sci. 6, 1426–1437.
17. Clackson, T. & Wells, J. A. (1995) Science 267, 383–386.
18. DeLano, W. L. (2002) Curr. Opin. Struct. Biol. 12, 14–20.
19. Bogan, A. A. & Thorn, K. S. (1998) J. Mol. Biol. 280, 1–9.
20. Massova, I. & Kollman, P. A. (1999) J. Am. Chem. Soc. 121, 8133–8143.
21. Kortemme, T. & Baker, D. (2002) Proc. Natl. Acad. Sci. USA 99, 14116–14121.
22. Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Freer, S. T. &

Rose, P. W. (2002) Proteins 48, 539–557.
23. DeLano, W. L., Ultsch, M. H., de Vos, A. M. & Wells, J. A. (2000) Science 287,

1279–1283.
24. Hu, Z., Ma, B., Wolfson, W. & Nussinov, R. (2000) Proteins 39, 331–342.
25. Tsai, C. J., Lin, S. L., Wolfson, H. & Nussinov, R. (1996) J. Mol. Biol. 260, 604–620.
26. Nussinov, R. & Wolfson, H. J. (1991) Proc. Natl. Acad. Sci. USA 88, 10495–10499.
27. Valdar, W. S. J. & Thornton, J. M. (1991) Proteins 42, 108–124.
28. Brinda, K., Kannan, N. & Vishveshwara, S. (2002) Protein Eng. 15, 265–277.

29. Leibowitz, N., Fligelman, Z., Nussinov, R. & Wolfson, H. (2001) Proteins 43,
235–245.

30. Leibowitz, N., Nussinov, R. & Wolfson, H. (2001) J. Comp. Biol. 8, 93–121.
31. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D.,

Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) J. Mol. Biol.
112, 535–542.

32. Lee, B. & Richards, F. M. (1971) J. Mol. Biol. 55, 379–400.
33. Chotia, C. (1975) J. Mol. Biol. 105, 1–14.
34. Shatsky, M., Nussinov, R. & Wolfson, H. (2002) in Algorithms in Bioinformatics,

Lecture Notes In Computer Science (Springer, Berlin), Vol. 2452, pp. 235–250.
35. Kuhlmann, U. C., Pommer, A. J., Moore, G. R., James, R. & Kleanthous, C.

(2000) J. Mol. Biol. 301, 1163–1178.
36. Li, W., Hamill, S. J., Hemmings, A. M., Moore, G. R., James, R. & Kleanthous,

C. (1998) Biochemistry 37, 11771–11779.
37. Wallis, R., Leung, K. Y., Osborne, M., Moore, G. R., James, R. & Kleanthous,

C. (1998) Biochemistry 37, 476–485.
38. Samanta, U., Pal, D. & Chakrabarti, P. (2000) Proteins 38, 288–300.
39. Fernandez, A. (2002) Protein Eng. 15, 1–16.
40. Lichtarge, O., Bourne, H. R. & Cohen, F. E. (1996) J. Mol. Biol. 257, 342–358.
41. Madabushi, S., Yao, H., Marsh, M., Kristensen, D. M., Philippi, A., Sowa, M. E.

& Lichtarge, O. (2002) J. Mol. Biol. 316, 139–154.
42. Friedberg, I. & Margalit, H. (2002) Protein Sci. 11, 350–360.
43. Kuntz, I. D., Chen, K., Sharp, K. A. & Kollman, P. A. (1999) Proc. Natl. Acad.

Sci USA 96, 9997–10002.
44. Sundberg, E. J. & Mariuzza, R. A. (2000) Structure (London) 8, R137–R142.
45. Ma, B., Wolfson, H. & Nussinov, R. (2001) Curr. Opin. Struct. Biol. 11, 364–369.
46. Ma, B., Shatsky, M., Wolfson, H. & Nussinov, R. (2002) Protein Sci. 11, 184–197.
47. Van Regenmortel, M. H. V. (1999) J. Mol. Recognit. 12, 1–2.
48. Demirel, M. C., Atilgan, A. R., Jernigan, R. L., Erman, B. & Bahar, I. (1998)

Protein Sci. 7, 2522–2532.
49. Cole, C. & Warwicker, J. (2002) Protein Sci. 11, 2860–2870.
50. Cunningham, B. C. & Wells, J. A. (1993) J. Mol. Biol. 234, 554–563.

Ma et al. PNAS � May 13, 2003 � vol. 100 � no. 10 � 5777

BI
O

PH
YS

IC
S


