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Presentation outline
• Human genome project:

Sequencing, assembly, international consortiums

• Genetic variants: 
Variant databases and annotation

• Machine learning methods for variant interpretation:
machine learning algorithms, prediction assessment

• Variations in cancer:
Cancer data resources, gene prioritization

• Conclusions and future directions



Human genome race
The first draft of the human genome was released in 2001.


The project was started 1990 and ended in 2003 and cost $3 billion

Venter et al (2001).  
Science. 291: 1304-1351.

Int. HGS Consortium (2001).  
Nature. 409: 860–921. Cracking the Genome: Inside the 

Race to Unlock Human DNA. 
by Kevin Davies 



Sequencing method
Shotgun sequencing involves randomly breaking up DNA sequences into fragments 

(reads) and then reassembling the sequence by looking for regions of overlap.

Venter et al. (1996) Nature.381:364-366



The genome assembly
The assembly problem is to reconstruct as much of a genome as possible 


given a collection of reads or read pairs.

Myers (2016). Information Technology. 58: 126–132

• the orientation of each read is not known


• one must allow a certain amount of error 


• the entire genome is not covered by the read data


Different algorithms were developed for optimizing the genome 
assembly. An important contribution was given by Eugene Myers 
who significantly contributed to the determination of the Human, 
Mouse and Drosophila genomes 



Some numbers

• Size: ~3.23 Billon bases


• 19,000-20,000 protein-coding genes 


•  Protein-coding sequences account ~1.5% of the genome, remaining part is 
associated with introns, non-coding, RNA molecules, regulatory DNA and 
sequences for which as yet no function has been determined.


• Differences among individuals on the order of ~0.1% while the differences with 
with chimpanzee is ~4%



Sequencing cost
During the last few years the sequencing cost of the human genome 


decreased significantly 

https://www.genome.gov/
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Big Data in biomedicine
International consortiums generated a huge amount of sequencing data 
from human and genomes from many organisms 



International consortiums
large-scale sequencing projects of the human genome

http://www.internationalgenome.org/1000 Genomes Project (2008-2015)

HapMap Project (2002-2009)

100,000 Genomes Project (2012-) https://www.genomicsengland.co.uk/



Single Nucleotide Variants
Single Nucleotide Variants (SNVs) 
is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the 
genome differs between members of the species. 

It is used to refer to Polymorphisms when the population frequency is ≥ 1% 

SNVs occur at any position and can be 
classified on the base of their locations. 


Coding SNVs can be subdivided into two 
groups: 
 


Synonymous: when single base substitutions do 
not cause a change in the resultant amino acid  

Non-synonymous or Single Amino Acid Variants 
(SAVs): when single base substitutions cause a 
change in the resultant amino acid. 

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov


1000 Genomes
The 1000 Genomes Project aims to create the largest public catalogue of 
human variations and genotype data. Last versione released the genotype 
of ~2,500 individuals.  

variant calling. Finally, by initially analysing the data with multiple
genotype and variant calling algorithms and then generating a con-
sensus of these results, the project reduced genotyping error rates by
30–50% compared to those currently achievable using any one of the
methods alone (Supplementary Fig. 1 and Supplementary Table 12).
We also used local realignment to generate candidate alternative

haplotypes in the process of calling short (1–50-bp) indels15, as well as
local de novo assembly to resolve breakpoints for deletions greater
than 50 bp. The latter resulted in a doubling of the number of large
(.1 kb) structural variants delineatedwith base-pair resolution16. Full
genome de novo assembly was also performed (Supplementary
Information), resulting in the identification of 3.7megabases (Mb)
of novel sequence not matching the reference at a high threshold for
assembly quality and novelty. All novel sequence matched other
human and great ape sequences in the public databases.

Rates of variant discovery
In the trio project, with an average mapped sequence coverage of 423
per individual across six individuals and 2.3 gigabases (Gb) of accessible
genome, we identified 5.9 million SNPs, 650,000 short indels (of
1–50 bp in length), and over 14,000 larger structural variants. In the
low-coverage project, with average mapped coverage of 3.63 per indi-
vidual across 179 individuals (Supplementary Fig. 2) and 2.4Gb of
accessible genome, we identified 14.4 million SNPs, 1.3 million short
indels and over 20,000 larger structural variants. In the exon project,
with an average mapped sequence coverage of 563 per individual
across 697 individuals and a target of 1.4Mb, we identified 12,758
SNPs and 96 indels.
Experimental validation was used to estimate and control the FDR

fornovel variants (SupplementaryTable 3). The FDR for each complete
call set was controlled to be less than 5% for SNPs and short indels,
and less than 10% for structural variants. Because in an initial test

almost all of the sites that we called that were already in dbSNP were
validated (285 out of 286), in most subsequent validation experiments
we tested only novel variants and extrapolated to obtain the overall
FDR. This process will underestimate the true FDR if more SNPs listed
in dbSNP are false positives for some call sets. The FDR for novel
variants was 2.6% for trio SNPs, 10.9% for low-coverage SNPs, and
1.7% for low-coverage indels (Supplementary Information and Sup-
plementary Tables 3 and 4a, b).
Variation detected by the project is not evenly distributed across

the genome: certain regions, such as the human leukocyte antigen
(HLA) and subtelomeric regions, show high rates of variation,
whereas others, for example a 5-Mb gene-dense and highly conserved
region around 3p21, show very low levels of variation (Supplementary
Fig. 3a). At the chromosomal scale we see strong correlation between
different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity par-
ticular to types of structural variant, for example structural variants
resulting from non-allelic homologous recombination are apparently
enriched in the HLA and subtelomeric regions (Supplementary Fig.
3b, top).

Variant novelty
As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered dif-
fered substantially among populations, variant types and allele fre-
quencies (Fig. 1). Novel SNPs had a strong tendency to be found
only in one analysis panel (set of related populations; Fig. 1a). For
SNPs also present in dbSNP version 129 (the last release before 1000
Genomes Project data), only 25%were specific to a single low-coverage
analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel
whereas only 4%were found in all analysis panels. In the exon project,

Table 1 | Variants discovered by project, type, population and novelty
a Summary of project data including combined exon populations

Statistic

Low coverage Trios
Exon
(total)

Unionacross
projectsCEU YRI CHB1JPT Total CEU YRI Total

Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (3) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 2.43 Gb

(86%)
2.39 Gb
(85%)

2.41 Gb
(85%)

2.42 Gb
(86.0%)

2.26 Gb
(79%)

2.21 Gb
(78%)

2.24 Gb
(79%)

1.4 Mb NA

No. of SNPs (% novel) 7,943,827
(33%)

10,938,130
(47%)

6,273,441
(28%)

14,894,361
(54%)

3,646,764
(11%)

4,502,439
(23%)

5,907,699
(24%)

12,758
(70%)

15,275,256
(55%)

Mean variant SNP sites per individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075

(39%)
941,567

(52%)
666,639

(39%)
1,330,158

(57%)
411,611

(25%)
502,462

(37%)
682,148

(38%)
96

(74%)
1,480,877

(57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893

(60%)
6,593
(41%)

8,129
(50%)

11,248
(51%)

ND 22,025
(61%)

No. of genotyped deletions (% novel) ND ND ND 10,742
(57%)

ND ND 6,317
(48%)

ND 13,826
(58%)

No. of duplications (% novel) 259
(90%)

320
(90%)

280
(91%)

407
(89%)

187
(93%)

192
(91%)

256
(92%)

ND 501
(89%)

No. of mobile element insertions (% novel) 3,202
(79%)

3,105
(84%)

1,952
(76%)

4,775
(86%)

1,397
(68%)

1,846
(78%)

2,531
(78%)

ND 5,370
(87%)

No. of novel sequence insertions (% novel) ND ND ND ND 111
(96%)

66
(86%)

174
(93%)

ND 174
(93%)

b Exon populations separately

Statistic CEU TSI LWK YRI CHB CHD JPT

Samples 90 66 108 112 109 107 105
Total collected bases (Gb) 151 64 53 147 93 127 211
Mean mapped depth on target (3) 73 71 32 62 47 62 53
No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)
Variant SNP sites per individual 715 727 902 794 713 770 694
No. of indels (no. novel) 23 (10) 22 (11) 24 (16) 38 (21) 30 (16) 26 (13) 25 (11)
Variant indel sites per individual 3 3 3 3 3 2 3

NA, not applicable; ND, not determined.

ARTICLE RESEARCH

2 8 O C T O B E R 2 0 1 0 | V O L 4 6 7 | N A T U R E | 1 0 6 3

Macmillan Publishers Limited. All rights reserved©2010

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.



SNVs and Disease
Single Nucleotide Variants (SNVs) are 
the most common type of genetic 
variations in human accounting for more 
than 90% of sequence differences (1000 
Genome Project Consortium, 2012).


SNVs can also be responsible of genetic 
diseases (Ng and Henikoff, 2002; Bell, 
2004).   


nonsynonymous SNVs 

neutral SNVs

disease-related  
SNVs

the mutations are related to a 
Mendelian pathologies   

the mutations do not compromise 
the organism’s health  

dbSNP

SwissVar
Disease
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SNVs and SAVs databases

http://www.ncbi.nlm.nih.gov/snp

dbSNP (Mar 2018) @ NCBI

Single Nucleotide Variants 

Homo sapiens        113,862,023 

Gallus gallus                15,104,956 

Zea mays                     14,672,946

http://www.expasy.ch/swissvar/

SwissVar (Oct 2018) @ ExPASy
Single Amino acid Variants 

Homo sapiens             76,608 

Disease                             29,529 

Polymorphisms                  39,779

Oct 2018

http://www.ncbi.nlm.nih.gov/snp
http://www.expasy.ch/swissvar/


Precision Medicine
The analysis of genomic data from healthy individuals and patients can be used to 
develop better diagnostic and personalized treatment strategies



Personalized medicine
Direct to consumers company are performing genotype test on markers associated 
to genetic traits, and soon the full genome sequencing will cost ~$1,000.

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.

The future bioinformatics challenges  
for personalized medicine will be:

1. Processing Large-Scale Robust 
Genomic Data

2. Interpretation of the Functional 
Effect and the Impact of Genomic 
Variation

3. Integrating Systems and Data to 
Capture Complexity

4. Making it all clinically relevant



Variant Interpretation



Sequence, Structure & Function
Genomic variants in sequence motifs could affect protein function. 

Mutation S362A of P53 affect the interaction with hydrolase USP7 and the 
deubiquitination of the protein.  

Nonsynonymous variants responsible 
for protein structural changes and 
cause loss of stability of the folded 
protein.

Mutation R411L removes the salt 
bridge stabilizing the structure of the 
IVD dehydrogenase. R411

Transcription  
activation

Interaction 
with DNA

Interaction 
with USP7

Interaction  
with WWOX

S362

Interaction 
with SH3



                                                1 [        .         .         .         .         :         .         .         . 80 
                  bits   E-value  N 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 1 P11686          400    1e-110  1 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 2 P15783          280     3e-74  1  80.6%        MDVGSKEVLMESPPDYTAVPGGRLLIPCCPVNIKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSITGPEAQQ    
 3 P21841          276     6e-73  1  78.7%        MDMSSKEVLMESPPDYSAGPRSQFRIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPETQK    
 4 P22398          270     3e-71  1  78.2%        MDMGSKEALMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEVQQ    
 5 Q1XFL5          268     1e-70  1  80.2%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 6 UPI0000E219B8   261     1e-68  1  89.4%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 7 UPI00005A47C8   259     6e-68  1  78.2%        MDVGSKEVLIESPpdYSAAPRGRLGIPCFPSSLKRLLIIVVVIVLVVVVIVGALLMGLHMSQKHTEMVLEMSMGGPEAQQ    
 8 Q3MSM1          206     8e-52  1  83.4%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 9 Q95M82           85     3e-15  1  82.4%        -------------------------------------------------------------------VLEMSIGGPEAPQ    
10 UPI000155C160    84     4e-15  1  48.9%        --------------------------------------------------------------------------------    
11 UPI0001555957    82     1e-14  1  83.6%        ------KVRADSPPDYSVAPRGRLGIPCCPFHLKRLLIIVVVVVLIVVVVLGALLMGLHMSQKHTEM-------------    
12 B3DM51           81     4e-14  1  34.8%        ----------------------------------------------------------HMSQKHTETIFQMSL-----QD    

Conserved or not?
In positions 66 the Glutamic acid is highly conserved Asparagine in position 138 
is mutated Threonine or Alanine

.....

.....   

                                               81          .         1         .         .         .         .         :         . 160
                  bits   E-value  N 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 1 P11686          400    1e-110  1 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 2 P15783          280     3e-74  1  80.6%        RLALSERVGTTATFSIGSTGTVVYDYQRLLIAYKPAPGTCCYIMKMAPQNIPSLEALTRKLQNF------QAKPQVPSSK    
 3 P21841(Mouse)   276     6e-73  1  78.7%        RLAPSERADTIATFSIGSTGIVVYDYQRLLTAYKPAPGTYCYIMKMAPESIPSLEAFARKLQNF------RAKPSTPTSK    
 4 P22398          270     3e-71  1  78.2%        RLALSEWAGTTATFPIGSTGIVTCDYQRLLIAYKPAPGTCCYLMKMAPDSIPSLEALARK---------FQANPAEPPTQ    
 5 Q1XFL5          268     1e-70  1  80.2%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQV--SVQAKPSTPTSK    
 6 UPI0000E219B8   261     1e-68  1  89.4%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALTRKVQNFQGQWKPQGERKRPGKR    
 7 UPI00005A47C8   259     6e-68  1  78.2%        RLALQERVGTTATFSIGSTGIVVYDYQRLLIAYKPAPGTCCYIMKMTPENIPSLEALTRKFQDFQV------KPAVSTSK    
 8 Q3MSM1          206     8e-52  1  83.4%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQ---------------    
 9 Q95M82           85     3e-15  1  82.4%        RLALRGRADTTATFSIGSTGIVVYDYQRLLIAYKPAPG------------------------------------------    
10 UPI000155C160    84     4e-15  1  48.9%        ---------------------------RLLIAYQPSPGATCYVTKMAPENIPSLDAITRE---FQ---SYQAKPSMPATK    
11 UPI0001555957    82     1e-14  1  83.6%        --------------------------------------------------------------------------------    
12 B3DM51           81     4e-14  1  34.8%        GSSTGAHGTGVATfgINSSASVVYDYSKLLIGTRPRPGHACYITRMDPEQVQSLETIAESV----------------LSK    



Sequence profile
The protein sequence profile is calculated running BLAST on the UniRef90 dataset and 
selecting only the hits with e-value < 10-9.  


The frequency distributions of the wild-type residues for disease-related and neutral variants 
are significantly different (KS p-value=0). 
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Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.



Machine learning
• Computational approach to build models based on the analysis of 

empirical data.

• Machine learning algorithms are suitable to address problems for which 
analytic solution does not exists and large amount of data are available.

• They are implemented selecting a representative set of data that are used 
in a training step and then validated on a test set with data “not seen” 
during the training. 

• Most popular machine learning approaches are in computational biology 
are Neural Networks, Support Vector Machines and Random Forest. 



Variant interpretation
Usually based learning algorithm which takes in input features 

associated to the variants and returns a probability for the variant to be 
Pathogenic or Benign

Pathogenic

Benign



SNPs&GO input features
C48W

. . . 40. . . . | . . . .50 . . .  

. D K M G M G T I C A N A L F N . 

. D K M G M G T I W A N A L F N . 

Mutated residue Sequence environment

    . . . 40. . . . | . . . . 50. . .    
. D K M G M G T I C A N A L F N . 
. D R M G M - T L C A N G A F N . 
. D R M G M G T A W L N G L F E . 
. D R M G M - T - - - N G A F N .

GO:Y
Disease variant
Neutral variant

Protein
GO term

GO space
GO:X

GO:Z

GO:T

Sequence information is encoded in 2 vectors 
each one composed by 20 elements. The first 
vector encodes for the mutation and the 
second one for the sequence environment  

Protein sequence profile information derived 
from a multiple sequence alignment. It is 
encoded in a 5 elements vector corresponding 
to different features general and local features

The GO information are encoded in a 2 elements 
vector corresponding to the number unique of 
GO terms associated to the protein sequences 
and the sum of the logarithm of the total number 
of disease-related and neutral variants for each 
GO term.



SNPs&GO performance
SNPs&GO results in better performance with respect to previously developed methods. 

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0,71 0,76 0,75 0,63 0,64 0,39 58

SIFT 0,76 0,75 0,76 0,77 0,75 0,52 93

PANTHER 0,74 0,77 0,73 0,71 0,76 0,48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Disease related  N = Neutral DB= 33672 nsSNVs
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Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Structure environment
There is a significant difference (KS p-value = 2.8x10-71) between the distributions of 
the relative Accessible Solvent Area for disease-related and neutral variants.  Their 
mean values are respectively 20.6 and 35.7.


Capriotti and Altman. (2011) BMC Bioinformatics.12 (Suppl 4); S3. 



The structure-based method
The method takes in to input 4 types of information encoded in a 48 elements vector.  
The input features are: mutation data; structure environment, sequence profile and 
functional score based on GO terms.  

V47

A49

L50

G48

G43
Q44

L50

A49

G48

V47

Q44 G43

Mutated Aminoacid 0 < R < 2Å 2 < R < 4Å 4 < R < 6Å

C46W

Output

RBF Kernel

A C D

1

E F G H I K L M N P Q R S T VW Y
Structure Environment (3D)

RSA

2 11 11

A C D E F G H I K L M N P Q R S T VW Y
Mutation (Mut)

-1 1

FW CIFN NTNS

Profile (Prof)
PD Pw NICPM

PANTHER 
NGOLGO

LGO (F)

Output

RBF Kernel

A C D E F G H I K L M N P Q R S T VW Y
Sequence Environment (Seq)

2 1 242 1 21 11 1

A C D E F G H I K L M N P Q R S T VW Y
Mutation (Mut)

-1 1

FW CIFN NTNS

Profile (Prof)
PD Pw NICPM

PANTHER 
NGOLGO

LGO (F)



Sequence vs Structure
The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation 
coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.   

Q2 P[D] S[D] P[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GO3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92

http://snps.biofold.org/snps-and-go

SNPs&GO
SNPs&GO3d

http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer


Prediction example
Damaging missing Cys-Cys interaction in the Glycosylasparaginase.  The mutation 
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179. 
This SAP is responsible for Aspartylglucosaminuria. 

1APY: Chain A, Res: 2.0 Å

C163

C179

C163



Whole-genome predictions
Most of the genetic variants occur in non-coding region that represents >98% 
of the whole genome.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M*

Predict the effect of SNVs in non-coding region is a challenging task because 
conservation is more difficult to estimate.


Sequence alignment is more complicated for sequences from non-coding regions.  



PhyloP100 score
Conservation analysis based on the pre-calculated score available at the UCSC 
revealed a significant difference between the distribution of the PhyloP100 
scores in Pathogenic and Benign SNVs.
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PhD-SNPg
PhD-SNPg is a simple method that takes in input 35 sequence-based features 
from a window of 5 nucleotides around the mutated position. 

Method

PhyloPSequence

25-element

Gradient  
Boosting

Probability

-0.6 0.9

1.0 0.0

1.0 9.3

8.0 -1.3

2.6 6.2

A C G T N 7 100

10-element

5’

3’

T 0 0 0 1 0

C 0 1 0 0 0

G➜A -1 0 1 0 0

T 0 0 0 1 0

A 1 0 0 0 0

http://snps.biofold.org/phd-snpg/ 

http://snps.biofold.org/phd-snpg/


Benchmarking  
PhD-SNPg has been tested in cross-validation on a set of 35,802 SNVs and on a blind 
set of 1,408 variants recently annotated.
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Q2 TNR NPV TPR PPV MCC F1 AUC

PhD-SNPg 0.861 0.774 0.884 0.925 0.847 0.715 0.884 0.924

Coding 0.849 0.671 0.845 0.938 0.850 0.651 0.892 0.908

Non-Coding 0.876 0.855 0.911 0.901 0.839 0.753 0.869 0.930

Capriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.



Blind Validation



CAGI experiments
The Critical Assessment of Genome Interpretation  is a community experiment to 
objectively assess computational methods for predicting the phenotypic impacts of 
genomic variation.

https://genomeinterpretation.org/



The P16 challenge
CDKN2A is the most common, high penetrance, susceptibility gene identified to 
date in familial malignant melanoma. p16INK4A  is one of the two oncosuppressor  
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).


Challenge: Evaluate how different variants of p16 protein impact its ability to block 
cell proliferation.


Provide a number between 50% that represent the normal proliferation rate of 
control cells and 100% the maximum proliferation rate in case cells.




SNPs&GO prediction

Variant Prediction Real ∆ %WT %MUT
G23R 0.932 0.918 0.014 84 0
G23S 0.923 0.693 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 0.367 84 2
G23C 0.946 0.866 0.080 84 0
G35E 0.590 0.600 0.010 12 14
G35W 0.841 0.862 0.021 12 0
G35R 0.618 0.537 0.081 12 4
L65P 0.878 0.664 0.214 15 1
L94P 0.979 0.939 0.040 56 0

Proliferation rates predicted using the output of SNPs&GO without any optimization.



P16 predictions 
SNPs&GO resulted among the best methods for predicting the impact of P16INK4A  
variants on cell proliferation. 

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0.477 0.495 0.409

Capriotti et al. (2017) Human Mutations. PMID: 28102005.



The NAGLU challenge

NAGLU is a lysosomal glycohydrolyase which deficiency causes a rare disorder 
referred as Sanfilippo B disease


Challenge: Predict the effect of the 165 variants on NAGLU enzymatic activity.


The submitted prediction should be a numeric value ranging from 0 (no activity) to 1 
(wild-type level of activity). 



A posteriori evaluation
I performed a posteriori evaluation of the performance based on my version of the 
predictor and found that SNPs&GO reaches similar accuracy than the best method 
(MutPred2)

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

MutPred2 0.780 0.850 0.565 0.30 0.595 0.619 0.443
SNPs&GO 0.800 0.854 0.603 0.33 0.575 0.616 0.445

SNPs&GO09 0.750 0.749 0.499 0.46 0.477 0.495 0.409



Variations in Cancer



Hallmarks of cancer

Hanahan and Weinberg (2011) Cell, 144:646

The six hallmarks of cancer - distinctive and complementary capabilities that 
enable tumor growth and metastatic dissemination.



Cancer is complex disorder characterized by high level of mutation rate.  

The complexity of cancer

Mutations can be classified in germline and somatic whether they are inherited 
from parents or the result of error in DNA replication. 


 
Another classification is between driver and passenger mutations whether they 
provide selective advantage with respect to normal cells increasing their 
proliferation rate or not.




Oncogene vs Suppressor
Oncogenes have highly recurrent mutations, tumor suppressors have sparse variants. 

Vogelstein et al. (2013) Science , 339:1546



Main challenges

• Detection of recurrent somatic mutations and cancer driver genes; 


• Prediction of driver variants and their functional impact; 


• Estimate the impact of multiple variants at network and pathway level; 


• Differentiate subclonal populations and their variation pattern.   

Computational methods for cancer genome interpretation have been developed to 
address the following issues:



The TCGA data
The Cancer Genome Atlas Consortium 

Genomic Data Commons (https://portal.gdc.cancer.gov/)

• 43 Projects 

• 69 Primary sites



The ICGC data portal
The International Cancer Genome Consortium

• ~24000 cancer patients

• 84 cancer projects in 22 primary sites

• more than 77 million simple somatic mutations. 

ICGC (https://dcc.icgc.org/) 



Mutational landscape
The distribution of somatic variants varies significantly across cancer types 

from https://dcc.icgc.org/projects



Driver vs Passenger  
Number of recurrent mutations decrease exponentially. 


On average a small fraction of variants is present in the majority of the samples.


Selecting mutations that are repeated at least twice we filter out ~98% mutations 
and are still able to recover ~96% of the patients 

Tian R, Basu M, Capriotti E.(2015) BMC Genomics. 16 (Suppl. 8): S7.
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Sample purity
Impurity in the sample purity reduce the ability to detect variants

specialized methods [28-31] have been developed to
quantify the extent of heterogeneity in a sample. The
simplest form of intra-tumor heterogeneity is admixture
by normal cells. The tumor purity of a sample is defined
as the fraction of cells in the sample that are cancerous.
A read from a tumor sample represents a sequence in
the cell, or subpopulation of cells, from which the read
was derived. Thus, lower tumor purity results in a reduc-
tion in the number of sequence reads derived from the
cancerous cells, and thus a reduction in the signal that
can be used to detect somatic mutations (Figure 1b).
Tumor purity is an important parameter in the detection

of somatic mutations. To obtain reasonable sensitivity and
specificity, methods to predict somatic aberrations must
utilize, either implicitly or explicitly, an estimate of

tumor purity. The VarScan 2 program [24] for calling
somatic SNVs and indels allows a user to provide an
estimate of tumor purity in order to calibrate the ex-
pected number of reads containing a somatic mutation
at a single locus. Conversely, methods such as MuTect
[22] and Strelka [23] explicitly model tumor and nor-
mal allele frequencies using observed data to calibrate
sensitivity. As a result, MuTect and Strelka may pro-
vide improved sensitivity for detecting mutations that
occur in lower frequencies, especially when tumor pur-
ity is unknown a priori. The performance of these and
other somatic mutation-calling algorithms depends on
accurate estimates of tumor purity.
Standard methods for estimating tumor purity involve

visual inspection by a pathologist or automated analysis

Read Heterozygous
germline SNV

Heterozygous
somatic SNV

Sequencing
error

100% Tumor purity

Reference genome

60% Tumor purity

Reference genome

(a)

(b)

Key:

Figure 1 Somatic mutation detection in tumor samples. DNA-sequence reads from a tumor sample are aligned to a reference genome
(shown in gray). Single-nucleotide differences between reads and the reference genome indicate germline single-nucleotide variants (SNVs; green
circles), somatic SNVs (red circles), or sequencing errors (black diamonds). (a) In a pure tumor sample, a location containing mismatches or single
nucleotide substitutions in approximately half of the reads covering the location indicates a heterozygous germline SNV or a heterozygous somatic
SNV - assuming that there is no copy number aberration at the locus. Algorithms for detecting SNVs distinguish true SNVs from sequencing errors by
requiring multiple reads with the same single-letter substitution to be aligned at the position (gray boxes). (b) As tumor purity decreases, the fraction
of reads containing somatic mutations decreases: cancerous and normal cells, and the reads originating from each, are shown in blue and orange,
respectively. The number of reads reporting a somatic mutation decreases with tumor purity, diminishing the signal to distinguish true somatic
mutations from sequencing errors. In this example, only one heterozygous somatic SNV and one hetererozygous germline SNV are detected
(gray boxes) as the mutation in the middle set of aligned reads is not distinguishable from sequencing errors.

Raphael et al. Genome Medicine 2014, 6:5 Page 3 of 17
http://genomemedicine.com/content/6/1/5

Raphael et al. (2014) Genome Medicine, 6:5



On average tumor samples have ~150 more rare missense variants and mutated genes

Clonal evolution
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Recurrent variations

Raphael et al. Genome Medicine 2014, 6:5

Recurrent mutations found in more 
samples than expected are good 
candidates for driver mutations.


To identify such recurrent mutations, a 
statistical test is performed which usually 
collapses all the non-synonymous 
mutations in a gene.


Identification of recurrent mutations in 
predefined groups of genes such as 
pathways and protein-protein interaction 
networks and  de novo identification of 
combinations, without relying on a priori 
definition.



The analysis of 1000 Genomes, The Cancer Genome Atlas (TCGA) normal 
and tumor samples shows an increasing number of genes with rare 
nonsynonymous SNVs. 

Mutation rates

Tumor = Colon Adenocarcinoma

PDR = Gene Putative Defective Rate

            Fraction of samples in which a gene has ≥1 

            nonsynonymous variant with MAF≤0.5% 
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New method for cancer gene prioritization based on the comparison of the 
mutation rates in tumor samples vs normal and 1000 Genomes samples.

Gene prioritization

Gene PDR[T] PDR[B] Score
KRAS 0.436 0.009 72.6
TP53 0.441 0.011 63.7

PIK3CA 0.291 0.007 39.4
BRAF 0.146 0.001 29.9

Colon Adenocarcinoma

PDR[T] = Putative Defective Rate Tumor

PDR[B] = Putative Defective Rate Background

Background = Max (Normal and 1000 Genomes) 

Tian R, Basu M, Capriotti E (2014). Bioinformatics. 30: i572-i578



Other Research Lines



 Variants and networks
The simple one-variant one-phenotype model valid for many monogenic diseases 
does not capture the complexity of polygenic traits and disorders.

Capriotti E, Ozturk K, Carter H. (2018). WIREs Systems Biology and Medicine. Under review



 Variants and drug response
Pharmacogenomics aims at understanding how genetic variants influence drug 
efficacy and toxicity.

Pharmacokinetics variants: drug 
undergoes to bioinactivation via metabolic 
pathway. When the functionality of the 
pathway is compromised, a much higher 
concentrations of parent drug will 
accumulate.

Pharmacodynamics variants have 
an effect on the drug-receptor 
interactions and concentration. 
These variations have a directly 
impact on the dose-response 
relationships.

https://www.pharmgkb.org/ 

Warfarin and CYP2C9. Warfarin and VKORC1 

https://www.pharmgkb.org/


• The advances of  the sequencing technology allowed to detect a huge amount of 
genetic variants whose function is unknown. 


• Variant interpretation is a challenging task that can be solved by machine learning 
methods based on protein sequence, structure and function information.  

• An important feature for variant interpretation is the sequence conservation. 
Variants in conserved regions are more likely to be pathogenic.This observation is 
valid also in noncoding regions.


• Statistical approaches for the analysis of genetic variations in cancer sample are 
important for developing gene prioritisation methods.

Conclusions



• Development of computational methods for integration of omics data from 
different experimental techniques.


• Implement interoperable systems and software applications for storing and 
sharing genomic data.


 

• Detect genetic variants at single cell level. Test the effect of mutations using 
genome editing technique such as CRISPR-Cas9. 


• Making all this information relevant at clinical level to improve health care system

Future directions
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