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Research topics

e Protein and RNA structure prediction: developments of methods for the
protein structure prediction by remote homology search. Implementation of
new methods for RNA structure comparison, functional assignment and
statistical-based potentials for model evaluation.

e Protein Folding: development of methods for the prediction of the protein
folding kinetics rates and mechanisms using stochastic and machine
learning approaches.

e Predict the impact of genetic variations: Machine learning methods for the
~ prediction of the impact of single point mutations on protein stability and
numan health.




Single Nucleotide Variants

Single Nucleotide Variants (SNVs)

is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the

genome differs between members of the species.

It is used to refer to Polymorphisms when the population frequency is = 1%

SNVs occur at any position and can be
classified on the base of their locations.

Coding SNVs can be subdivided into two
groups:

Synonymous: when single base substitutions do
not cause a change in the resultant amino acid

Non-synonymous or Single Amino Acid Variants
(SAVs): when single base substitutions cause a
change in the resultant amino acid.
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Sequence, Structure & Function

Genomic variants in sequence motifs could affect protein function.
Mutation S362A of P53 affect the interaction with hydrolase USP7 and the
deubiquitination of the protein.

r S362
- __—_—_—
Transcription Interaction Interaction Interaction Interaction
activation with WWOX with SH3  with DNA with USP7

Nonsynonymous variants responsible
for protein structural changes and
cause loss of stability of the folded
protein.

Mutation R411L removes the salt
bridge stabilizing the structure of the
IVD dehydrogenase.




Machine learning

* Computational approach to build models based on the analysis of
empirical data.

e Machine learning algorithms are suitable to address problems for which
analytic solution does not exists and large amount of data are available.

* They are implemented selecting a representative set of data that are used
In a training step and then validated on a test set with data “not seen”
during the training.

* Most popular machine learning approaches are in computational biology
are Neural Networks, Support Vector Machines and Random Forest.



Input and Output

A machine learning algorithm takes in input a set of variables (features)
and returns a numerical or discrete output

Machine Learning
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Types of Predictions

* Regression is used to
predict continuous values.
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For this point, can you predict its color?



Regression Evaluation

Compare predicted and real values using different correlation tests
and the Root Mean Square Error

 D(r-F)(y-5)
S =3 3 (v-5)

Pearson Correlation

Root Mean Square Error RMSE = N i=l



Classification Evaluation

TP + TN Actual values
Overall Accuracy 2= i y
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Matthews C - TP xTN — FP x FN
Correlation \J (TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)




ROC Curve

TN . TP
True Positive Rate TPR = r E
TP+ FN
FP E
False Positive Rate FPR =
FP+TN A "

The Area Under the Receiver operating
characteristic (ROC) Curve (AUC) is a
prediction evaluation measure that is 0.5 for
completely random predictors and close to 1.0
for highly accurate predictors.

TPR

Baldi et al. (2000) Bioinformatics, 16:412-424

0 FPR 1



Mutation and Stability



Protein folding

Protein folding is the process by which a protein assumes its native structure from
the unfolded structure
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Folding and stability

The folding free energy difference, AGr, is typically small, of the order of -5 to -15 kcal/
mol for a globular protein (compared to e.g. -30 to -100 kcal/mol for a covalent bond).

Free Energy
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Folding and mutations

* \Mutations of the protein sequence can affect the folding process
changing the stability of the folded structure.

® Failure to folding process can produce inactive proteins with different
properties even toxic. Protein misfolding is believed to be the main cause
of neurodegenerative and other diseases.

® \Web available databases are collecting large amount of thermodynamic
data from mutagenesis experiments that can be used to develop
methods for the prediction the protein stability change upon mutation.


http://en.wikipedia.org/wiki/Disease

Mutation and stability

If a protein is mutated in a single site, what is the effect of the
mutation on the stability of the protein?




Free energy change

If we mutate one residue in the protein sequence,
IS the protein stability increased or decreased?
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ProTherm database

ProTherm is a collection of numerical data of thermodynamic parameters
including Gibbs free energy change, enthalpy change, heat capacity change,

transition temperature etc. for wild type and mutant proteins, that are important
for understanding the structure and stability of proteins.
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for Proteins and Mutants

[Go ] Overview
ProTherm is a collection of ical data of ynamic such as Gibbs free energy change, enthalpy change, heat capacity change, transition temperature
etc. for wild type and mutant proteins, that are important for understanding the structure and stability of proteins. It also contains information about secondary structure an
cccccccccc ity of wild type residues, experimental conditions (pH, temperature, buffer, ion and protein cor ),
activity information (Km and Kcat ).
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Known Problems

Download

Total number of entries 25820
Number of unique proteins 740
Total number of all proteins 1045
Number of Proteins with mutants 311
Number of Single Mutations 12561
Number of Double Mutations 1744
Number of Multiple Mutations 1132

Number of Wild Type 10383
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Sequence-based predictor

Mutation C->W Sequence Environment
ACDEFGHIKLMNPQRSTVWYTPH ACDEFGHIKLMNPQRSTVWY

CECO00A00LCOC0ACOE000  60600008000000000000

RBF Kernel

. <

Output O(i) where i = decrease or increase stability

SVM-SEQUENCE: 20 element vector that describes the amino acid mutation,
2 element pH and T (experimental conditions)
20 more input features (40 in total) encoding the sequence residue
environment

40. . . . |
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Mutated Aminoacid B Sequence Window

Capriotti et al. (2005) Bioinformatics, 21: ii54-ii58.



Structure-based predictor

Mutation C->W < Structural Environment
ACDEFGHI KLMNPQRSTVWY T:é.‘n’,;’ ACDEFGHI KLMNPQRSTVWY

CEOCO00A00LCOC0ACOE000E0E0C00E000E006RE00

RBF Kernel

. <

Output O(i) where i = decrease or increase stability

SVM-STRUCTURE: 20 element vector that describes the amino acid mutation,
3 element pH, T and relative solvent accessible area
20 more input features (43 in total) encoding the structure residue
environment

G43

Mutated Aminoacid || 0 <R < 2A 2<R<4A B4 <RrR<6A



Classification results

Q2 P[-] S[-] P[+] S[+] C
SVM-Sequence 0.77 0.79 0.91 0.69 0.46 0.42
SVM-Structure 0.80 0.83 0.91 0.73 0.56 0.51

+ Increase stability — Decrease stability

Sequence-based predictor

Structure-based predictor
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DBSEQ= 2087 mutations

Q2: Overall Accuracy C: Mean Correlation Coefficient DB

DB3D= 1948 mutations

: Fraction of database that are predicted with a reliability the given threshold



Predicted AAG
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Sequence-based predictor
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DBSEQ= 2087 mutations

C= 0.62 (RMSE= 1.45 kcal/mole)
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http://folding.biofold.org/i-mutant

Capiriotti et al. (2005) Nucleic Acids Research 33, W306-W310.
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Mutation and Disease



Personalized medicine

Currently direct to consumers company are performing genotype test on markers
associated to genetic traits, and soon full genome sequencing will cost about

$1000.

The future bioinformatics challenges
for personalized medicine will be:

1. Processing Large-Scale Robust
Genomic Data

2. Interpretation of the Functional
Effect and the Impact of Genomic
Variation

3. Integrating Systems and Data to
Capture Complexity

4. Making it all clinically relevant

Pharmaco- Personal
Genomics Genomics

Personalized

Medicine

Medicine

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.



SNVs and SAVs databases

dbSNP 2016/2017) @ NCBI
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SNVs and Disease

Single Nucleotide Variants (SNVs) are 1,000,000,000
the most common type of genetic 100,000,000 — dbSNP
variations in human accounting for more
than 90% of sequence differences (1000
Genome Project Consortium, 2012).

10,000,000 —

1,000,000 —

100,000 — SwissVar

W Disease

10,000 —

SNVs can also be responsible of genetic
diseases (Ng and Henikoff, 2002; Bell,

2004). 100~
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In positions 66 the Glutamic acid is highly conserved Asparagine in position 138
IS mutated Threonine or Alanine

E-value
le-110
3e-74
6e-73
3e-71
le-70
le-68
6e-68
8e-52
3e-15
4e-15
le-14
de-14

E-value
le-110
3e-74
6e-73
3e-71
le-70
le-68
6e-68
8e-52
3e-15
4e-15
le-14
de-14

N 100.0%
1 100.0%
1 80.6%
78.7%
78.2%
80.2%
89.4%
78.2%
83.4%
82.4%
48.9%
83.6%
34.8%

PR R R RERERR BB

N 100.0%
100.0%
80.6%
78.7%
78.2%
80.2%
89.4%
78.2%
83.4%
82.4%
48.9%
83.6%
34.8%

PR R RRRRRPRHRRRR

1

81

[ . .
MDVGSKEVLMESPPDYSAAPRGRFGIP
MDVGSKEVLMESPPDYSAAPRGRFGIP
MDVGSKEVLMESPPDYTAVPGGRLLIP
MDMSSKEVLMESPPDYSAGPRSQFRIP
MDMGSKEALMESPPDYSAAPRGRFGIP
MDVGSKEVLMESPPDYSAVPGGRLRIP
MDVGSKEVLMESPPDYSAAPRGRFGIP
MDVGSKEVLIESPpdYSAAPRGRLGIP
MDVGSKEVLMESPPDYSAVPGGRLRIP

VLEMSIGAPEAQQ
VLEMSIGAPEAQQ
VLEMSITGPEAQQ
VLEMSIGAPETQK
VLEMSIGAPEVQQ
VLEMSLAGPEAQQ
VLEMSIGAPEAQQ
VLEMSMGGPEAQQ
VLEMSLAGPEAQQ
VLEMSIGGPEAPQ

RLALSEHLVTTATFSIGSTGLVVYDYQOLLIAYKPAPGT
RLALSEHLVTTATFSIGSTGLVVYDYQOLLIAYKPAPGT
RLALSERVGTTATFSIGSTGTVVYDYQRLLIAYKPAPGT
RLAPSERADTIATFSIGSTGIVVYDYQRLLTAYKPAPGTY
RLALSEWAGTTATFPIGSTGIVTCDYQRLLIAYKPAPGT
RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGT
RLALSEHLVTTATFSIGSTGLVVYDYQOLLIAYKPAPGT
RLALQERVGTTATFSIGSTGIVVYDYQRLLIAYKPAPGT
RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGT

RLALRGRADTTATFSIGSTGIVVYDYQRLLTIAYKPAPG—--

--------------------------- RLLIAYQPSPGAT

GSSTGAHGTGVATEfgINSSASVVYDYSKLLIGTRPRPGHA

YIMKIAPESIPSLEAI
YIMKIAPESIPSLEAI
YIMKMAPONIPSLEAI
YIMKMAPESIPSLEAH
YLMKMAPDSIPSLEAI
YVMKMSPQSMPSLEAI
YIMKIAPESIPSLEAI
YIMKMTPENIPSLEAI
YVMKMSPQSMPSLEAI

YITRMDPEQVQSLET]

KVHNFQME SLOQAKPAVPTSK
KVHNFQME SLQAKPAVPTSK

KLONF=-===—— OAKPQVPSSK
KLONF====—= RAKPSTPTSK
Koo FOQANPAEPPTQ

KFQNFQV--SVQAKPSTPTSK
KVONFQGOWKPQGERKRPGKR
KFQDFQV—————— KPAVSTSK
KFQNFQmmmmmm e e

80

160



Sequence profile

The protein sequence profile is calculated running BLAST on the UniRef90 dataset and
selecting only the hits with e-value < 10-°.

The frequency distributions of the wild-type residues for disease-related and neutral variants
are significantly different (KS p-value=0).
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Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.
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SNPs&GO input features

Sequence information is encoded in 2 vectors
each one composed by 20 elements. The first
vector encodes for the mutation and the
second one for the sequence environment

Protein sequence profile information derived
from a multiple sequence alignment. It is
encoded in a 5 elements vector corresponding
to different features general and local features

The GO information are encoded in a 2 elements
vector corresponding to the number unique of
GO terms associated to the protein sequences
and the sum of the logarithm of the total number
of disease-related and neutral variants for each
GO term.



SNPs&GO performance

SNPs&GO results in better performance with respect to previously developed methods.

Po P. Pu Ne

0000

ACDEFGHIKLMNPQRSTVWY

ACDEFGHIKLMNPQRSTVWY Fu Fv Ns N: ClI

00000

[ Mutation (Mut) I Sequence Environment (Seq) IProfile (Prof) I PANTHER I LGO (F)]

NGO LGO

RBF Kernel

.

[ Output ]

Method Q2 | P[D] | QD] | P[N] | QIN] C PM
PolyPhen 071 | 0,76 | 0,75 | 0,63 | 0,64 | 0,39 58
SIFT 0,76 | 0,75 | 0,76 | 0,77 | 0,75 | 0,52 03

PANTHER 0,74 0,77 0,73 0,71 0,76 0,48 /6
SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100

D = Disease related N = Neutral DB= 33672 nsSNVs

Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Structure environment

There is a significant difference (KS p-value = 2.8x10-71) between the distributions of
the relative Accessible Solvent Area for disease-related and neutral variants. Their

mean values are respectively 20.6 and 35.7.

100

80 -
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Neutral

Disease

[ Disease
O Neutral

Capriotti and Altman. (2011) BMC Bioinformatics.12 (Suppl 4); S3.



The structure-based method

The method takes in to input 4 types of information encoded in a 48 elements vector.
The input features are: mutation data; structure environment, sequence profile and
functional score based on GO terms.

Mutation (Mut) Structure Environment (3D) Profile (Prof) | PANTHER | LGO (F)
ACDEFGHIKLMNPQRSTVWY]JACDEFGHI KLMNPQRSTVWYRSAJF,w Fx Ns N: Cl | P, P. Pu N¢

(0000E00000008080800 0 |00000 0000 N.L.

RBF Kernel

Q44 Q44 G43

C46W

Mutated Aminoacid || 0<R<2A 2<R<4A Bs<RrR<6A



Sequence vs Structure

The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation

coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.

Q2 P[D] S[D] PI[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GOs3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92
A 10

0.8

0.6

TPR

0.4

0.2 0.2

SNPs&GOs3d

o SNPS&GO | = = = = &) DB

0.0 — I I I 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0 1
FPR

RI

http://snps.biofold.org/snps-and-go



http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer

Accuracy vs Accessibility

The predictions are more accurate for mutations occurring in buried region (0-30%). Mutations
of exposed residues results in lower accuracy.
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Prediction example

Damaging missing Cys-Cys interaction in the Glycosylasparaginase. The mutation
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179.
This SAP is responsible for Aspartylglucosaminuria.
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CAGI experiments

The Critical Assessment of Genome Interpretation is a community experiment to
objectively assess computational methods for predicting the phenotypic impacts of
genomic variation.

Mo s - smer

Data Use Agreement

2 Overview
2 CAGI Presentations

® Challenges
2 Bipolar exomes

® Crohn's exomes

3 eQTL causal SNPs

@ Hopkins clinical panel
& NAGLU

& NPM-ALK

® PGP

& Pyruvate kinase

3 SickKids clinical
genomes

& SUMO ligase
3 Warfarin exomes

2 Conference

Welcome to the CAGI experiment!
The CAGI 4 Conference

The Fourth Critical Assessment of Genome Interpretation (CAGI 4) prediction season has closed. Eleven
challenges were released beginning on 3 August 2015, and the final challenge closed on 1 February 2016.
Independent assessment of the predictions has been completed.

The CAGI 4 Conference was held 25-27 March 2016 in Genentech Hall on the UCSF Mission Bay campus in
San Francisco, California. Conference presentations (remixable slides and video) are provided on the CAGI 4
conference program page and also on each challenge page.

Please distribute this information widely and follow our Twitter feed @CAGInews and the web site for
updates. For more information on the CAGI experiment, see the Overview.

CAGI Lead Scientist or Postdoctoral Researcher position open!

Take the lead of the CAGI experiment! We are searching for a CAGI Lead Scientist or Postdoctoral
Researcher to join us in early 2016. Roger Hoskins will lead the CAGI 4 experiment to its completion, but he
is unable to continue in the role beyond mid-2016. He will overlap with the new CAGI leader to ensure a
seamless transition. Job descriptions posted at http://compbio.berkeley.edu/jobs

https://genomeinterpretation.org/



The P16 challenge

CDKNZ2A is the most common, high penetrance, susceptibility gene identified to
date in familial malignant melanoma. p16/NK4A is one of the two oncosuppressor
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).

Challenge: Evaluate how different variants of p16 protein impact its ability to block
cell proliferation.

Provide a number between 50% that represent the normal proliferation rate of
control cells and 100% the maximum proliferation rate in case cells.



SNPs&GO prediction

Proliferation rates predicted using the output of SNPs&GO without any optimization.

Variant | Prediction Real A %YWT | %MUT
G23R 0,932 0,918 | 0,014 84 0
G23S 0,923 0,693 | 0,230 84 1
G23V 0,940 0,901 0,039 84 0
G23A 0,904 0,537 | 0,367 84 2
G23C 0,946 0,866 | 0,080 84 0
G35E 0,590 0,600 | 0,010 12 14
G35W 0,841 0,862 | 0,021 12 0
G35R 0,618 0,537 | 0,081 12 4

L65P 0,878 0,664 | 0,214 15 1
L94P 0,979 0,939 | 0,040 56 0




P16 predictions

SNPs&GO resulted among the best methods for predicting the impact of P16INK4A

variants on cell proliferation.

Capiriotti et al. (2017) Human Mutations. PMID: 28102005.

Method Q2 AUC MC RMSE FPearson F'Spearman | FKendallTau
SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0477 0.495 0.409
SPARK-LAB SNPs&GO DrCancer
B 100 C 100
r=0.83 r=0.66 r=0.57
r'=0.84 r'=0.81 . r=0.75
20 .o 20 .o
80 80
70 | ° 70 | L
60 . 60 .
. (® G23a . (®a23a
A 50 ' 50
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.9 1.0 05 06 0.7 0.8 0.9 1.0



The NAGLU challenge

NAGLU is a lysosomal glycohydrolyase which deficiency causes a rare disorder
referred as Sanfilippo B disease

Challenge: Predict the effect of the 165 variants on NAGLU enzymatic activity.

The submitted prediction should be a numeric value ranging from 0 (no activity) to 1
(wild-type level of activity).



A posteriori evaluation

| performed a posteriori evaluation of the performance based on my version of the
predictor and found that SNPs&GO reaches similar accuracy than the best method

(MutPred?2)

Method Q2 AUC MC RMSE FPearson FSpearman | FKendallTau
MutPred2 0.780 0.850 0.565 0.30 0.595 0.619 0.443
SNPs&GO 0.800 0.854 0.603 0.33 0.575 0.616 0.445

SNPs&GO0° 0.750 0.749 0.499 0.46 0.477 0.495 0.409
A 10 B 10 C 10
SNPs&GO SNPs&GO SNPs&GO
MutPred2 MutPred2 e MUtPred2
0.8 - 0.8 0.8
:
Eos—ﬁ \\ £ 0.6 0.6 -
s N\ 3 =
8 2 <
< 0.4+ » 0.4- 0.4
£
2
0.2 0.2 0.2
0.0 T T T T 0.0 T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Threshold

Threshold
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Whole-genome predictions

Most of the genetic variants occur in non-coding region that represents >98%
of the whole genome.
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Predict the effect of SNVs in non-coding region is a challenging task because
conservation is more difficult to estimate.

Seqguence alignment is more complicated for sequences from non-coding regions.



PhyloP100 score

Conservation analysis based on the pre-calculated score available at the UCSC
revealed a significant difference between the distribution of the PhyloP100

scores in Pathogenic and Benign SNVs.

PhyloP100

15

15

10

10

Tt

Pathogenic Benign

PhyloP: Pollard et al,, Genome Research 2010



PhD-SNP¢

PhD-SNPgis a simple method that takes in input 35 sequence-based features
from a window of 5 nucleotides around the mutated position.

Sequence PhyloP
5 A C G T N 7 100
T 0 0 0 1 0 -0.6 | 0.9
C 0 1 0 0 0 1.0 1 0.0
G-A|| -1 0 1 0 0 1.0
T 0 0 0 1 0
A 1 0 0 0 0
3’ 25-element " 10-element

Gradient
Boosting

[ Probability]

http://snps.biofold.org/phd-snpg/
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set of 1,408 variants recently annotated.

Benchmarking

PhD-SNP9g has been tested in cross-validation on a set of 35,802 SNVs and on a blind

Q2 TNR NPV TPR PPV MCC F1 AUC
PhD-SNPs9 0.861 | 0.774 | 0.884 | 0.925 | 0.847 | 0.715 | 0.884 | 0.924
Coding 0.849 | 0.671 | 0.845 | 0.938 | 0.850 | 0.651 | 0.892 | 0.908
Non-Coding | 0.876 | 0.855 | 0.911 | 0.901 0.839 | 0.753 | 0.869 | 0.930
All Coding Non-Coding
1.0
0.8
0.6
& & &
- - = 0.4
CADD =0.92 CADD = 0.91 CADD =0.92
0.2 FATHMM-MKL = 0.85 0-2 FATHMM-MKL = 0.86 0.2 FATHMM-MKL = 0.86
PhD-SNPg = 0.92 PhD-SNPg = 0.91 PhD-SNPg = 0.93
0.0 | | | | | 0.0 | | | | | 0.0 | | |
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 1.0
FPR FPR FPR
Capiriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.




Conclusions

* The machine learning methods based on sequence and structural information,
trained to predict the sign and the value of AAG, reach a good level of accuracy.

- Evolutionary information are important for predicting deleterious variants.

Wild-type residues in disease-related sites are more conserved than in neutral
sites.

* Protein structure information improves performance of machine learning methods
to discriminate between disease-causing and neutral variants.

* Nucleotide conservation is an important feature to predict the impact of SNVs in
non coding regions
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