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Single Nucleotide Variants
Single Nucleotide Variants (SNVs) 
is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the 
genome differs between members of the species. 

It is used to refer to Polymorphisms when the population frequency is ≥ 1% 

SNVs occur at any position and can be 
classified on the base of their locations. 


Coding SNVs can be subdivided into two 
groups: 
 


Synonymous: when single base substitutions do 
not cause a change in the resultant amino acid  

Non-synonymous or Single Amino Acid Variants 
(SAVs): when single base substitutions cause a 
change in the resultant amino acid. 

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov


Sequence, Structure & Function
Genomic variants in sequence motifs could affect protein function. 

Mutation S362A of P53 affect the interaction with hydrolase USP7 and the 
deubiquitination of the protein.  

Nonsynonymous variants responsible 
for protein structural changes and 
cause loss of stability of the folded 
protein.

Mutation R411L removes the salt 
bridge stabilizing the structure of the 
IVD dehydrogenase. R411
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Machine learning
• Computational approach to build models based on the analysis of 

empirical data.

• Machine learning algorithms are suitable to address problems for which 
analytic solution does not exists and large amount of data are available.

• They are implemented selecting a representative set of data that are used 
in a training step and then validated on a test set with data “not seen” 
during the training. 

• Most popular machine learning approaches are in computational biology 
are Neural Networks, Support Vector Machines and Random Forest. 



Input and Output
A machine learning algorithm takes in input a set of variables (features) 

and returns a numerical or discrete output



Types of Predictions

Years of Experience

Sa
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ry

• Regression is used to 
predict continuous values. 

• Classification is used to predict 
which class a data point is part 
of (discrete value).



Regression Evaluation

Pearson Correlation

Root Mean Square Error

Compare predicted and real values using different correlation tests 
and the Root Mean Square Error



Classification Evaluation

Overall Accuracy
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ROC Curve
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The Area Under the Receiver operating 
characteristic (ROC) Curve (AUC) is a 
prediction evaluation measure that is 0.5 for 
completely random predictors and close to 1.0 
for highly accurate predictors. 
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Mutation and Stability



Protein folding
Protein folding is the process by which a protein assumes its native structure from 
the unfolded structure



Folding and stability
The folding free energy difference, ΔGF, is typically small, of the order of -5 to -15 kcal/
mol for a globular protein (compared to e.g. -30 to -100 kcal/mol for a covalent bond).
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Folding and mutations

• Mutations of the protein sequence can affect the folding process 
changing the stability of the folded structure. 


• Failure to folding process can produce inactive proteins with different 
properties even toxic. Protein misfolding is believed to be the main cause 
of neurodegenerative and other diseases.


• Web available databases are collecting large amount of thermodynamic 
data from mutagenesis experiments that can be used to develop 
methods for the prediction the protein stability change upon mutation.

http://en.wikipedia.org/wiki/Disease


Mutation and stability
if a protein is mutated in a single site, what is the effect of the 
mutation on the stability of the protein?

wild-type  mutant  

0



Free energy change
If we mutate one residue in the protein sequence, 

is the protein stability increased or decreased?

ΔΔGf = ΔGf mut - ΔGf wt
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ProTherm is a collection of numerical data of thermodynamic parameters 
including Gibbs free energy change, enthalpy change, heat capacity change, 
transition temperature etc. for wild type and mutant proteins, that are important 
for understanding the structure and stability of proteins.

ProTherm database

Total number of entries            25820 
Number of unique proteins             740  
Total number of all proteins           1045  
Number of Proteins with mutants    311 
Number of Single Mutations    12561  
Number of Double Mutations        1744  
Number of Multiple Mutations        1132  
Number of Wild Type                   10383                   

Feb 2013



Sequence-based predictor

O(i) where i = decrease or increase stability

20 element vector that describes the amino acid mutation,

2 element pH and  T (experimental conditions)

20 more input features (40 in total)  encoding the sequence residue 

environment 

SVM-SEQUENCE: 

C46W
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Mutated Aminoacid Sequence Window

Capriotti et al. (2005) Bioinformatics, 21: ii54-ii58.



Structure-based predictor
Mutation C->W

pH  R
SA

Structural Environment 

RBF Kernel

Output

A C D  E F  G  H I   K  L M N P Q  R S  T  V W Y
1-1

T 
1
A C D  E F  G  H I   K  L M N P Q  R S  T  V W Y

21 111 11

20 element vector that describes the amino acid mutation,

3 element pH, T and relative solvent accessible area  
20 more input features (43 in total)  encoding the structure residue 

environment

SVM-STRUCTURE: 

O(i) where i = decrease or increase stability
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Classification results

Sequence-based predictor Structure-based predictor

Q2: Overall Accuracy C: Mean Correlation Coefficient  DB:  Fraction of database that are predicted with a reliability  the given threshold

Q2 P[-] S[-] P[+] S[+] C
SVM-Sequence 0.77 0.79 0.91 0.69 0.46 0.42
SVM-Structure 0.80 0.83 0.91 0.73 0.56 0.51

+ Increase stability – Decrease stability 

DBSEQ= 2087 mutations DB3D= 1948 mutations

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2
C
DB

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2_1
C_1
DB_1

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2
C
DB

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2_1
C_1
DB_1

Q2
C
DB

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2
C
DB

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2_1
C_1
DB_1

Q2
C
DB

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2
C
DB

0 1 2 3 4 5 6 7 8 9
RI

0.0

0.2

0.4

0.6

0.8

1.0 Q2_1
C_1
DB_1



Regression results
Sequence-based predictor Structure-based predictor

C= 0.62 (RMSE= 1.45 kcal/mole)  C= 0.71 (RMSE= 1.30 kcal/mole)

DBSEQ= 2087 mutations DB3D= 1948 mutations

Capriotti et al. (2005) Nucleic Acids Research 33, W306-W310.

http://folding.biofold.org/i-mutant 
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Mutation and Disease



Personalized medicine
Currently direct to consumers company are performing genotype test on markers 
associated to genetic traits, and soon full genome sequencing will cost ~$1000.

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.

The future bioinformatics challenges  
for personalized medicine will be:

1. Processing Large-Scale Robust 
Genomic Data

2. Interpretation of the Functional 
Effect and the Impact of Genomic 
Variation

3. Integrating Systems and Data to 
Capture Complexity

4. Making it all clinically relevant



1000 Genomes
The 1000 Genomes Project aims to create the largest public catalogue of 
human variations and genotype data. Last versione released the genotype 
of ~2,500 individuals.  

variant calling. Finally, by initially analysing the data with multiple
genotype and variant calling algorithms and then generating a con-
sensus of these results, the project reduced genotyping error rates by
30–50% compared to those currently achievable using any one of the
methods alone (Supplementary Fig. 1 and Supplementary Table 12).
We also used local realignment to generate candidate alternative

haplotypes in the process of calling short (1–50-bp) indels15, as well as
local de novo assembly to resolve breakpoints for deletions greater
than 50 bp. The latter resulted in a doubling of the number of large
(.1 kb) structural variants delineatedwith base-pair resolution16. Full
genome de novo assembly was also performed (Supplementary
Information), resulting in the identification of 3.7megabases (Mb)
of novel sequence not matching the reference at a high threshold for
assembly quality and novelty. All novel sequence matched other
human and great ape sequences in the public databases.

Rates of variant discovery
In the trio project, with an average mapped sequence coverage of 423
per individual across six individuals and 2.3 gigabases (Gb) of accessible
genome, we identified 5.9 million SNPs, 650,000 short indels (of
1–50 bp in length), and over 14,000 larger structural variants. In the
low-coverage project, with average mapped coverage of 3.63 per indi-
vidual across 179 individuals (Supplementary Fig. 2) and 2.4Gb of
accessible genome, we identified 14.4 million SNPs, 1.3 million short
indels and over 20,000 larger structural variants. In the exon project,
with an average mapped sequence coverage of 563 per individual
across 697 individuals and a target of 1.4Mb, we identified 12,758
SNPs and 96 indels.
Experimental validation was used to estimate and control the FDR

fornovel variants (SupplementaryTable 3). The FDR for each complete
call set was controlled to be less than 5% for SNPs and short indels,
and less than 10% for structural variants. Because in an initial test

almost all of the sites that we called that were already in dbSNP were
validated (285 out of 286), in most subsequent validation experiments
we tested only novel variants and extrapolated to obtain the overall
FDR. This process will underestimate the true FDR if more SNPs listed
in dbSNP are false positives for some call sets. The FDR for novel
variants was 2.6% for trio SNPs, 10.9% for low-coverage SNPs, and
1.7% for low-coverage indels (Supplementary Information and Sup-
plementary Tables 3 and 4a, b).
Variation detected by the project is not evenly distributed across

the genome: certain regions, such as the human leukocyte antigen
(HLA) and subtelomeric regions, show high rates of variation,
whereas others, for example a 5-Mb gene-dense and highly conserved
region around 3p21, show very low levels of variation (Supplementary
Fig. 3a). At the chromosomal scale we see strong correlation between
different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity par-
ticular to types of structural variant, for example structural variants
resulting from non-allelic homologous recombination are apparently
enriched in the HLA and subtelomeric regions (Supplementary Fig.
3b, top).

Variant novelty
As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered dif-
fered substantially among populations, variant types and allele fre-
quencies (Fig. 1). Novel SNPs had a strong tendency to be found
only in one analysis panel (set of related populations; Fig. 1a). For
SNPs also present in dbSNP version 129 (the last release before 1000
Genomes Project data), only 25%were specific to a single low-coverage
analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel
whereas only 4%were found in all analysis panels. In the exon project,

Table 1 | Variants discovered by project, type, population and novelty
a Summary of project data including combined exon populations

Statistic

Low coverage Trios
Exon
(total)

Unionacross
projectsCEU YRI CHB1JPT Total CEU YRI Total

Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (3) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 2.43 Gb

(86%)
2.39 Gb
(85%)

2.41 Gb
(85%)

2.42 Gb
(86.0%)

2.26 Gb
(79%)

2.21 Gb
(78%)

2.24 Gb
(79%)

1.4 Mb NA

No. of SNPs (% novel) 7,943,827
(33%)

10,938,130
(47%)

6,273,441
(28%)

14,894,361
(54%)

3,646,764
(11%)

4,502,439
(23%)

5,907,699
(24%)

12,758
(70%)

15,275,256
(55%)

Mean variant SNP sites per individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075

(39%)
941,567

(52%)
666,639

(39%)
1,330,158

(57%)
411,611

(25%)
502,462

(37%)
682,148

(38%)
96

(74%)
1,480,877

(57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893

(60%)
6,593
(41%)

8,129
(50%)

11,248
(51%)

ND 22,025
(61%)

No. of genotyped deletions (% novel) ND ND ND 10,742
(57%)

ND ND 6,317
(48%)

ND 13,826
(58%)

No. of duplications (% novel) 259
(90%)

320
(90%)

280
(91%)

407
(89%)

187
(93%)

192
(91%)

256
(92%)

ND 501
(89%)

No. of mobile element insertions (% novel) 3,202
(79%)

3,105
(84%)

1,952
(76%)

4,775
(86%)

1,397
(68%)

1,846
(78%)

2,531
(78%)

ND 5,370
(87%)

No. of novel sequence insertions (% novel) ND ND ND ND 111
(96%)

66
(86%)

174
(93%)

ND 174
(93%)

b Exon populations separately

Statistic CEU TSI LWK YRI CHB CHD JPT

Samples 90 66 108 112 109 107 105
Total collected bases (Gb) 151 64 53 147 93 127 211
Mean mapped depth on target (3) 73 71 32 62 47 62 53
No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)
Variant SNP sites per individual 715 727 902 794 713 770 694
No. of indels (no. novel) 23 (10) 22 (11) 24 (16) 38 (21) 30 (16) 26 (13) 25 (11)
Variant indel sites per individual 3 3 3 3 3 2 3

NA, not applicable; ND, not determined.

ARTICLE RESEARCH

2 8 O C T O B E R 2 0 1 0 | V O L 4 6 7 | N A T U R E | 1 0 6 3

Macmillan Publishers Limited. All rights reserved©2010

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.



SNVs and Disease
Single Nucleotide Variants (SNVs) are 
the most common type of genetic 
variations in human accounting for more 
than 90% of sequence differences (1000 
Genome Project Consortium, 2012).


SNVs can also be responsible of genetic 
diseases (Ng and Henikoff, 2002; Bell, 
2004).   


nonsynonymous SNVs 

neutral SNVs

disease-related  
SNVs

the mutations are related to a 
Mendelian pathologies   

the mutations do not compromise 
the organism’s health  
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SNVs and SAVs databases

http://www.ncbi.nlm.nih.gov/snp

dbSNP (Mar 2018) @ NCBI

Single Nucleotide Variants 

Homo sapiens        113,862,023 

Gallus gallus                15,104,956 

Zea mays                     14,672,946

http://www.expasy.ch/swissvar/

SwissVar (Oct 2018) @ ExPASy
Single Amino acid Variants 

Homo sapiens             76,608 

Disease                             29,529 

Polymorphisms                  39,779

Oct 2018

http://www.ncbi.nlm.nih.gov/snp
http://www.expasy.ch/swissvar/


                                                1 [        .         .         .         .         :         .         .         . 80 
                  bits   E-value  N 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 1 P11686          400    1e-110  1 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 2 P15783          280     3e-74  1  80.6%        MDVGSKEVLMESPPDYTAVPGGRLLIPCCPVNIKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSITGPEAQQ    
 3 P21841          276     6e-73  1  78.7%        MDMSSKEVLMESPPDYSAGPRSQFRIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPETQK    
 4 P22398          270     3e-71  1  78.2%        MDMGSKEALMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEVQQ    
 5 Q1XFL5          268     1e-70  1  80.2%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 6 UPI0000E219B8   261     1e-68  1  89.4%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 7 UPI00005A47C8   259     6e-68  1  78.2%        MDVGSKEVLIESPpdYSAAPRGRLGIPCFPSSLKRLLIIVVVIVLVVVVIVGALLMGLHMSQKHTEMVLEMSMGGPEAQQ    
 8 Q3MSM1          206     8e-52  1  83.4%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 9 Q95M82           85     3e-15  1  82.4%        -------------------------------------------------------------------VLEMSIGGPEAPQ    
10 UPI000155C160    84     4e-15  1  48.9%        --------------------------------------------------------------------------------    
11 UPI0001555957    82     1e-14  1  83.6%        ------KVRADSPPDYSVAPRGRLGIPCCPFHLKRLLIIVVVVVLIVVVVLGALLMGLHMSQKHTEM-------------    
12 B3DM51           81     4e-14  1  34.8%        ----------------------------------------------------------HMSQKHTETIFQMSL-----QD    

Conserved or not?
In positions 66 the Glutamic acid is highly conserved Asparagine in position 138 
is mutated Threonine or Alanine

.....

.....   

                                               81          .         1         .         .         .         .         :         . 160
                  bits   E-value  N 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 1 P11686          400    1e-110  1 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 2 P15783          280     3e-74  1  80.6%        RLALSERVGTTATFSIGSTGTVVYDYQRLLIAYKPAPGTCCYIMKMAPQNIPSLEALTRKLQNF------QAKPQVPSSK    
 3 P21841(Mouse)   276     6e-73  1  78.7%        RLAPSERADTIATFSIGSTGIVVYDYQRLLTAYKPAPGTYCYIMKMAPESIPSLEAFARKLQNF------RAKPSTPTSK    
 4 P22398          270     3e-71  1  78.2%        RLALSEWAGTTATFPIGSTGIVTCDYQRLLIAYKPAPGTCCYLMKMAPDSIPSLEALARK---------FQANPAEPPTQ    
 5 Q1XFL5          268     1e-70  1  80.2%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQV--SVQAKPSTPTSK    
 6 UPI0000E219B8   261     1e-68  1  89.4%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALTRKVQNFQGQWKPQGERKRPGKR    
 7 UPI00005A47C8   259     6e-68  1  78.2%        RLALQERVGTTATFSIGSTGIVVYDYQRLLIAYKPAPGTCCYIMKMTPENIPSLEALTRKFQDFQV------KPAVSTSK    
 8 Q3MSM1          206     8e-52  1  83.4%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQ---------------    
 9 Q95M82           85     3e-15  1  82.4%        RLALRGRADTTATFSIGSTGIVVYDYQRLLIAYKPAPG------------------------------------------    
10 UPI000155C160    84     4e-15  1  48.9%        ---------------------------RLLIAYQPSPGATCYVTKMAPENIPSLDAITRE---FQ---SYQAKPSMPATK    
11 UPI0001555957    82     1e-14  1  83.6%        --------------------------------------------------------------------------------    
12 B3DM51           81     4e-14  1  34.8%        GSSTGAHGTGVATfgINSSASVVYDYSKLLIGTRPRPGHACYITRMDPEQVQSLETIAESV----------------LSK    



Sequence profile
The protein sequence profile is calculated running BLAST on the UniRef90 dataset and 
selecting only the hits with e-value < 10-9.  


The frequency distributions of the wild-type residues for disease-related and neutral variants 
are significantly different (KS p-value=0). 
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SNPs&GO input features
C48W
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GO:Y
Disease variant
Neutral variant

Protein
GO term

GO space
GO:X

GO:Z

GO:T

Sequence information is encoded in 2 vectors 
each one composed by 20 elements. The first 
vector encodes for the mutation and the 
second one for the sequence environment  

Protein sequence profile information derived 
from a multiple sequence alignment. It is 
encoded in a 5 elements vector corresponding 
to different features general and local features

The GO information are encoded in a 2 elements 
vector corresponding to the number unique of 
GO terms associated to the protein sequences 
and the sum of the logarithm of the total number 
of disease-related and neutral variants for each 
GO term.



SNPs&GO performance
SNPs&GO results in better performance with respect to previously developed methods. 

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0,71 0,76 0,75 0,63 0,64 0,39 58

SIFT 0,76 0,75 0,76 0,77 0,75 0,52 93

PANTHER 0,74 0,77 0,73 0,71 0,76 0,48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Disease related  N = Neutral DB= 33672 nsSNVs

Output

RBF Kernel

A C D

1

E F G H I K L M N P Q R S T VW Y
Structure Environment (3D)

RSA

2 11 11

A C D E F G H I K L M N P Q R S T VW Y
Mutation (Mut)

-1 1

FW CIFN NTNS

Profile (Prof)
PD Pw NICPM

PANTHER 
NGOLGO

LGO (F)

Output

RBF Kernel

A C D E F G H I K L M N P Q R S T VW Y
Sequence Environment (Seq)

2 1 242 1 21 11 1

A C D E F G H I K L M N P Q R S T VW Y
Mutation (Mut)

-1 1

FW CIFN NTNS

Profile (Prof)
PD Pw NICPM

PANTHER 
NGOLGO

LGO (F)

Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Structure environment
There is a significant difference (KS p-value = 2.8x10-71) between the distributions of 
the relative Accessible Solvent Area for disease-related and neutral variants.  Their 
mean values are respectively 20.6 and 35.7.


Capriotti and Altman. (2011) BMC Bioinformatics.12 (Suppl 4); S3. 



The structure-based method
The method takes in to input 4 types of information encoded in a 48 elements vector.  
The input features are: mutation data; structure environment, sequence profile and 
functional score based on GO terms.  

V47

A49

L50

G48

G43
Q44

L50

A49

G48

V47

Q44 G43

Mutated Aminoacid 0 < R < 2Å 2 < R < 4Å 4 < R < 6Å

C46W

Output

RBF Kernel

A C D

1

E F G H I K L M N P Q R S T VW Y
Structure Environment (3D)

RSA

2 11 11

A C D E F G H I K L M N P Q R S T VW Y
Mutation (Mut)

-1 1

FW CIFN NTNS

Profile (Prof)
PD Pw NICPM

PANTHER 
NGOLGO

LGO (F)

Output

RBF Kernel

A C D E F G H I K L M N P Q R S T VW Y
Sequence Environment (Seq)

2 1 242 1 21 11 1

A C D E F G H I K L M N P Q R S T VW Y
Mutation (Mut)

-1 1

FW CIFN NTNS

Profile (Prof)
PD Pw NICPM

PANTHER 
NGOLGO

LGO (F)



Sequence vs Structure
The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation 
coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.   

Q2 P[D] S[D] P[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GO3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92

http://snps.biofold.org/snps-and-go

SNPs&GO
SNPs&GO3d

http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer


Accuracy vs Accessibility
The predictions are more accurate for mutations occurring in buried region (0-30%). Mutations 
of exposed residues results in lower accuracy.
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Prediction example
Damaging missing Cys-Cys interaction in the Glycosylasparaginase.  The mutation 
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179. 
This SAP is responsible for Aspartylglucosaminuria. 

1APY: Chain A, Res: 2.0 Å

C163

C179

C163



Whole-genome predictions
Most of the genetic variants occur in non-coding region that represents >98% 
of the whole genome.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y M*

Predict the effect of SNVs in non-coding region is a challenging task because 
conservation is more difficult to estimate.


Sequence alignment is more complicated for sequences from non-coding regions.  



PhyloP100 score
Conservation analysis based on the pre-calculated score available at the UCSC 
revealed a significant difference between the distribution of the PhyloP100 
scores in Pathogenic and Benign SNVs.
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PhD-SNPg
PhD-SNPg is a simple method that takes in input 35 sequence-based features 
from a window of 5 nucleotides around the mutated position. 

Method

PhyloPSequence

25-element

Gradient  
Boosting

Probability

-0.6 0.9

1.0 0.0

1.0 9.3

8.0 -1.3

2.6 6.2

A C G T N 7 100
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http://snps.biofold.org/phd-snpg/ 

http://snps.biofold.org/phd-snpg/


Benchmarking  
PhD-SNPg has been tested in cross-validation on a set of 35,802 SNVs and on a blind 
set of 1,408 variants recently annotated.
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Q2 TNR NPV TPR PPV MCC F1 AUC

PhD-SNPg 0.861 0.774 0.884 0.925 0.847 0.715 0.884 0.924

Coding 0.849 0.671 0.845 0.938 0.850 0.651 0.892 0.908

Non-Coding 0.876 0.855 0.911 0.901 0.839 0.753 0.869 0.930

Capriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.



Blind Validation



CAGI experiments
The Critical Assessment of Genome Interpretation  is a community experiment to 
objectively assess computational methods for predicting the phenotypic impacts of 
genomic variation.

https://genomeinterpretation.org/



The P16 challenge
CDKN2A is the most common, high penetrance, susceptibility gene identified to 
date in familial malignant melanoma. p16INK4A  is one of the two oncosuppressor  
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).


Challenge: Evaluate how different variants of p16 protein impact its ability to block 
cell proliferation.


Provide a number between 50% that represent the normal proliferation rate of 
control cells and 100% the maximum proliferation rate in case cells.




SNPs&GO prediction

Variant Prediction Real ∆ %WT %MUT
G23R 0.932 0.918 0.014 84 0
G23S 0.923 0.693 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 0.367 84 2
G23C 0.946 0.866 0.080 84 0
G35E 0.590 0.600 0.010 12 14
G35W 0.841 0.862 0.021 12 0
G35R 0.618 0.537 0.081 12 4
L65P 0.878 0.664 0.214 15 1
L94P 0.979 0.939 0.040 56 0

Proliferation rates predicted using the output of SNPs&GO without any optimization.



P16 predictions 
SNPs&GO resulted among the best methods for predicting the impact of P16INK4A  
variants on cell proliferation. 

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0.477 0.495 0.409

Capriotti et al. (2017) Human Mutations. PMID: 28102005.



The NAGLU challenge

NAGLU is a lysosomal glycohydrolyase which deficiency causes a rare disorder 
referred as Sanfilippo B disease


Challenge: Predict the effect of the 165 variants on NAGLU enzymatic activity.


The submitted prediction should be a numeric value ranging from 0 (no activity) to 1 
(wild-type level of activity). 



A posteriori evaluation
I performed a posteriori evaluation of the performance based on my version of the 
predictor and found that SNPs&GO reaches similar accuracy than the best method 
(MutPred2)

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

MutPred2 0.780 0.850 0.565 0.30 0.595 0.619 0.443

SNPs&GO 0.800 0.854 0.603 0.33 0.575 0.616 0.445

SNPs&GO09 0.750 0.749 0.499 0.46 0.477 0.495 0.409



• The machine learning methods based on sequence and structural information, 
trained to predict the sign and the value of ΔΔG, reach a good level of accuracy. 


• Evolutionary information are important for predicting deleterious variants.  
Wild-type residues in disease-related sites are more conserved than in neutral 
sites. 


• Protein structure information improves performance of machine learning methods 
to discriminate between disease-causing and neutral variants. 


• Nucleotide conservation is an important feature to predict the impact of SNVs in 
non coding regions

Conclusions
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