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ABSTRACT: Single nucleotide polymorphisms (SNPs) are
the simplest and most frequent form of human DNA
variation, also valuable as genetic markers of disease
susceptibility. The most investigated SNPs are missense
mutations resulting in residue substitutions in the
protein. Here we propose SNPs&GO, an accurate
method that, starting from a protein sequence, can
predict whether a mutation is disease related or not by
exploiting the protein functional annotation. The scoring
efficiency of SNPs&GO is as high as 82%, with a
Matthews correlation coefficient equal to 0.63 over a
wide set of annotated nonsynonymous mutations in
proteins, including 16,330 disease-related and 17,432
neutral polymorphisms. SNPs&GO collects in unique
framework information derived from protein sequence,
evolutionary information, and function as encoded in the
Gene Ontology terms, and outperforms other available
predictive methods.
Hum Mutat 30, 1237–1244, 2009. & 2009 Wiley-Liss, Inc.
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Introduction

Recent estimates indicates that single nucleotide polymorph-
isms (SNPs) occur approximately every 200 bases in DNA of
human populations (Ensembl release 53.36o). SNPs have been
correlated to human evolution, drug sensitivity, and disease
susceptibility [Barbujani and Goldstein, 2004; Bell, 2004;
Edmonds et al., 2004; Goldstein and Cavalleri, 2005; Ng and
Henikoff, 2002; Robert et al., 2005]. The international and
ongoing HapMap (http://www.hapmap.org) project is funded to
determine the common patterns of DNA sequence variation in the
human genome and its relation to common diseases [Cotton
et al., 2008; Wang et al., 1998]. In recent years, new experimental
techniques for large-scale SNP identification in the human
population have allowed the exponential increase of the
dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP/)
that presently contains over 10 million validated cases (dbSNP
129) [Sherry et al., 2001]. Other important and human

devoted databases include the Human Gene Mutation Data-
base (HGMD, http://www.hgmd.cf.ac.uk/ac/index.php) and the
Human Genome Variation database of Genotype-Phenotype
(HGVbase2GP, http://www.hgvbaseg2p.org/index).

A major problem is SNP annotation. To this end several Web
servers and tools have been developed to relate SNPs to potential
phenotypic effects. Although OMIM (http://www.ncbi.nlm.nih.-
gov/omim/) is the major source of data, annotation is obtained
with different approaches. SNPs can be retrieved and analyzed
[Riva and Kohane, 2002; Stitziel et al., 2004; Wang et al., 2005]
also with links to the Gene Ontology (GO) sequence-associated
terms [Schwarz et al., 2008].

Different computational tools were developed to study the effects
of SNPs in the human genome at the phenotype level. Correlations
among DNA mutations stored in the databases and the insurgence
of pathologic phenomena were computed [Collins et al., 1997; Rish
and Merikangas, 1996]. In general, mutations occurring in coding
regions may have a greater impact on the gene functionality than
those occurring in noncoding regions [Cargill et al., 1999].

In this article we focus on missense nonsynonymous SNPs, that
is, those that change single residues in the protein sequence.
Several computational methods are available to predict when a
mutation is disease related, starting from the protein sequence
and/or protein multiple sequence alignments (for a recent review,
see [Tavtigian et al., 2008]). They are based on: (1) sequence
homology [Ng and Henikoff, 2002, 2003; Thomas et al., 2003], (2)
empirical rules [Ramensky et al., 2002; Sunyaev et al., 2001], (3)
structural criteria [Chasman and Adams, 2001; Cheng et al., 2008;
Wang and Moult, 2001; Worth et al., 2007; Yue and Moult, 2005,
2006], (4) artificial neural networks [Bromberg and Rost, 2007;
Ferrer-Costa et al., 2002, 2004, 2005], (5) decision trees [Dobson
et al., 2006; Krishnan and Westhead, 2003], (6) random forests
[Bao and Cui, 2005], and (7) support vector machines (SVMs)
[Capriotti et al., 2006; Kulkarni et al., 2008; Tian J et al., 2007]. All
these approaches exploit information from the protein sequence,
the sequence profile, the three dimensional structure (3D) of the
protein and/or adopt some combinations of them. The structural
approach is affected by limited availability of 3D data so that it is
not generally applicable. Evolutionary information as encoded in
the sequence profile is the most important piece of information
for improving the predictive performance, as indicated by the
results of PANTHER (Protein ANalysis THrough Evolutionary
Relationships) [Thomas and Kejariwal, 2004], SIFT (Sorting
Intolerant From Tolerant) [Ng and Henikoff, 2003], PolyPhen
(Polymorphism Phenotyping) [Ramensky et al., 2002], and other
predictors described in the literature [Bromberg and Rost, 2007],
including ours [Capriotti et al., 2006]. When the computed
selective pressure of the mutation at the codon level [Arbiza et al.,
2006] was cast into the method, some predictive improvement was
detected [Capriotti et al., 2008].
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An alternative source of information that can provide useful
indications is the GO database that addresses the need of coherent
descriptions of gene products [Ashburner et al., 2000]. The GO
project has developed tree-structured and controlled vocabularies
(ontology) that describe gene products in terms of their associated
biological processes, cellular components, and molecular func-
tions. We therefore compute a GO-based score to increase the
information provided to our new implementation. The adoption
of a similar GO-based score was previously introduced by other
authors to predict single point protein mutations focusing on
cancer disease in combination with other features (PFAM- and
SIFT-derived scores) [Kaminker et al., 2007a,b].

In this article we describe a tool for predicting whether human
SNPs are or are not disease-associated by including the protein
sequence GO terms in our method (SNPs&GO). Our method is a
robust predictor, trained/tested over more than 33,000 mutations
that casts in a unique input vector various features, including
sequence information, evolutionary information derived in
different ways, and our defined functional GO score. The
efficiency of the prediction is quite high as indicated by different
scoring indexes and by the comparison with other previously
implemented predictors. The overall SNPs&GO accuracy and
Matthews correlation coefficient values, computed by adopting a
cross validation procedure on a recent human SNPs data set
[Boeckmann et al., 2003], are as high as 0.82 and 0.63, respectively.

Materials and Methods

The Mutation Data Set

Our SNPs data set is derived from release 55.2 (April 2008) of the
Swiss-Prot database [Boeckmann et al., 2003]. The choice of the
training data set is particularly critical when developing machine
learning methods. The issue was recently addressed [Care et al., 2007],
and it was found that largely irrelevant rules may be derived for
missense SNPs (mSNPs) predictions from mutagenesis data
[Chasman and Adams, 2001; Krishnan and Westhead, 2003] and
from the generation of neutral data starting from pseudomutations
between orthologous proteins [Ferrer-Costa et al., 2002, 2004, 2005;

Sunyaev et al., 2001; Yue and Moult, 2005, 2006]. The best data set for
human mSNP predictions is that of the Swiss-Prot annotated variants
[Care et al., 2007; Yip et al., 2004]. We retrieved our data set from
Swiss-Prot with the following constraints: (1) the protein source is
Homo sapiens, (2) the mutations are related to diseases or neutral
polymorphisms (no unclassified cases are considered), (3) the data are
relative to single-point protein mutations (no deletion or insertion
mutations are taken into account).

After this selection procedure, we filtered out neutral polymorph-
isms belonging to proteins of class I and II of the Major
Histocompatibility complex (human leukocyte antigen, HLA), because
these proteins are naturally hypervariable. We ended up with a data set
(SP_human) consisting of 33,762 different single point mutations
(16,330 of which are disease-related and 17,432 are described as
neutral polymorphisms), obtained from 7,265 protein sequences.

Implementation of the Predictors

Our task is to predict whether a given single point protein
mutation is a neutral polymorphism or if it is involved with the
insurgence of a human genetic disease. The task can be cast as a
classification problem for the protein upon mutation. The SVM
classifies mutations into disease-related (desired output set to 0)
and neutral polymorphism (desired output set to 1). No attempts
were made to improve the accuracy, changing the decision
threshold that is set equal to 0.5. To develop a more accurate tool
we include: the local sequence environment of the mutation at
hand, features derived from sequence alignment, prediction data
provided by the PANTHER classification system and a functional-
based log-odds score calculated considering the GO classification
(Fig. 1). The final input vector consists of 52 values:

* 40 components encode for the mutations and sequence local
information (Seq);

* four inputs concern features derived from sequence profile plus
an extra one (a bit) codifying the presence/absence of the
features themselves (Prof);

* four values represent selected parameters of PANTHER
(prediction output plus an extra node encoding the presence/
absence of PANTHER output) (PANTHER);

Figure 1. SNPs&GO input schema. Different features from different metrics are encoded and cast in an unique framework. A first level of
input takes into consideration sequence-derived information (Seq): the first 20 values encode the involved mutation (e.g., C-4W) setting the
wild-type residue to �1 and the mutated residue to 1(yellow nodes); the following 20 values (grey nodes) describe the mutation local
environment in terms of occurrence of residues (nodes containing 1) inside a window centred on the mutation at hand. A second level of
information encodes the sequence profile (Prof, five nodes in blue): Fwt is the frequency of wild-type residue, Fm is the frequency of the mutated
residue, Nal is the number of aligned sequences at the mutated position, CI is a conservation index, Bp is a bit value related to the presence/
absence of the sequence profile. The information derived from PANTHER output is also encoded (PANTHER, five nodes in pink): Pdel is the
disease-related probability of the mutation at hand, Pwt is the probability of the wild-type residue, Psub is the probability of the mutated residue,
NIC is Number of Independent Counts, BPA is also a presence/absence bit. The last two nodes (black) encode GO terms: LGO is the log-odds
score derived from the GO database and its occurrence (Bf). For more details see Materials and Methods and the text (Table 1). Each level of
information is given as input to a support vector machine (SVM) separately or combined, for a total of 10 different SVM predictors. The input
vector of SNPs&GO includes all the information is the input vector of SNPs&GO.
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* two components encode for the GO log-odd score (LGO) and
for its presence/absence (LGO).

Each of the four sets of input values coding for sequence,
profile, PANTHER-derived, and GO-derived information, were
first implemented independently (Seq, Prof, PANTHER, LGO in
Table 1); then integrated step by step as indicated when necessary.

For the SVM implementation we use the LIBSVM library
(http://www.csie.ntu.edu.tw/�cjlin/libsvm/) (with a RBF kernel
function, K(xi,xj) 5 exp(�Gkxi�xjk

2)) [Chang and Lin, 2001]. To
increase the generalization performance of the method we
optimized the two critic parameters: C and g. The C parameter
concerns the penalty with which the classifier is allowed to make
errors in training/testing phases (soft margin), whereas the g
parameter is an intrinsic value of RBF kernel concerning the width
of support vector. LIBSVM offers the possibility to perform an
automatic grid search for the above parameters. The optimal
values of the parameters are C 5 8 and g5 0.03125.

Scoring the Performance

The results obtained with our SVM methods are evaluated
using a crossvalidation procedure on the SP_human data set. The
reported data for the classification task performed by the SVM
methods are obtained adopting a 20-fold crossvalidation proce-
dure in such a way that the ratio of the disease-related to the
neutral polymorphism mutations corresponds to the original
distribution of the whole set. Proteins in different crossvalidation
sets share less than 30% sequence identity. Furthermore, all the
proteins in the SP_human data sets are clustered according to
their sequence similarity with the blastclust program in the BLAST
suite (by adopting the default value of length coverage equal to 0.9
and the percentage similarity threshold equal to 30%) [Altschul
et al., 1997]. We kept the mutations detected on the same cluster
of protein sequences in the same training set to prevent an

overestimation of the results. Performance is scored with several
measures. For sake of completeness here we review the ones
adopted in this article. The efficiency of the predictor is scored
using the statistical indexes defined in the following.

The overall accuracy is:

Q2 ¼ P=N ð1Þ

where P is the total number of correctly predicted mutations and
N is the total number of mutations.

The correlation coefficient C is defined as:

CðsÞ ¼ ½pðsÞnðsÞ � uðsÞoðsÞ�=D ð2Þ

where D is the normalization factor:

D ¼ ½ðpðsÞ þ uðsÞÞðpðsÞ þ oðsÞÞðnðsÞ þ uðsÞÞðnðsÞ þ oðsÞÞ�1=2 ð3Þ

for each class s (D and N, for disease-related and neutral
polymorphism, respectively); p(s) and n(s) are the total number of
correct predictions and correctly rejected assignments, respec-
tively, and u(s) and o(s) are the numbers of under- and over-
predictions.

The coverage (sensitivity) for each discriminated class s is
evaluated as:

QðsÞ ¼ pðsÞ=½pðsÞ þ uðsÞ� ð4Þ

where p(s) and u(s) are the same as in Equation 3.
The probability of correct predictions P(s) (or accuracy for s, or

specificity) is computed as:

PðsÞ ¼ pðsÞ=½pðsÞ þ oðsÞ� ð5Þ

where p(s) and o(s) are the same as in Equation 3 (ranging from 0
to 1).

Finally, it is very important to assign a reliability score to each
prediction. For each output O(D) computed by the SVM for the
category Disease and indicating the probability of being disease-
associated, the reliability score (RI) is obtained by computing:

RI ¼ 20 � jOðDÞ � 0:5j ð6Þ

Other standard scoring measures, such as the area under the
ROC curve (AUC) and the true positive rate [TPR 5 Q(s)] at 5%
of false positive rate [FPR 5 1�P(s)] are also computed [Baldi
et al., 2001].

Encoding Sequence Information

The input vector portion relative to sequence information
consists of 40 values: the first 20 (the 20 residue types) explicitly
define the mutation by setting to �1 the element corresponding to
the wild-type residue, and to 1 the newly introduced residue (all
the remaining elements are kept equal to 0). The last 20 input
values encode for the mutation sequence environment (again, the
20 elements represent the 20 residue types). Each input is
provided as the number of the encoded residue type, found inside
a window centred at the residue that undergoes mutation and that
symmetrically spans the sequence to the left (N-terminus) and to
the right (C-terminus) with a length of 19 residues (Fig. 1; for
more details see [Capriotti et al., 2006]). The sequence environ-
ment inputs sum to 18, not including the central residue.

Encoding Profile Information

We derive for each mutation: the frequency of the wild-type
(Fwt), the frequency of the mutated residue (Fm), the number of
aligned sequences (Nal), and a conservation index (CI) for the
position at hand: the more a residue is functionally important the
more it is conserved during evolution [Pei and Grishin, 2001]

Table 1. Different SVM Implementations Improve the
Predictive Performance

Method Q2 P[D] Q[D] P[N] Q[N] C AUC

Seq 0.68 0.68 0.64 0.69 0.72 0.36 0.75

Prof 0.69 0.68 0.76 0.79 0.84 0.38 0.77

PANTHER 0.74 0.77 0.73 0.71 0.76 0.48 0.82

LGO 0.68 0.74 0.52 0.65 0.83 0.37 0.79

Seq1Prof 0.76 0.75 0.73 0.76 0.78 0.51 0.82

Seq1PANTHER 0.77 0.77 0.73 0.77 0.80 0.53 0.84

Seq1LGO 0.75 0.78 0.68 0.73 0.82 0.51 0.84

Seq1Prof1PANTHER 0.78 0.78 0.75 0.78 0.81 0.56 0.85

Seq1Prof1LGO 0.80 0.81 0.76 0.79 0.84 0.60 0.88

Seq1PANTHER1LGO 0.80 0.82 0.76 0.79 0.84 0.60 0.88

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 0.89

Scoring indexes are evaluated for single point protein mutations related to human
disease (D) and neutral polymorphism (N), respectively; Q2 is the overall accuracy;
Q is the coverage of the class (D, N); P is the probability of correct predictions (or
accuracy) of the class (D, N); C is the Matthews Correlation Coefficient; AUC is the
area under the ROC Curve (for a mathematical definition of the different indexes see
the Materials and Methods section). Different SVMs are analyzed: Seq is based only
on mutation and sequence environment information; LGO is based only on Gene
Ontology derived log-odds score; Prof exploits only information derived from
sequence profile; PANTHER exploits only features derived from PANTHER output;
Seq1Prof is the SVM based on mutation, sequence and sequence profile
information; Seq1PANTHER is the SVM based on mutation, sequence environment
and PANTHER output features; Seq1LGO is the SVM based on mutation, sequence
environment and Gene Ontolgy derived log-odds score; Seq1Prof1 PANTHER,
Seq1Prof1LGO, Seq1PANTHER1LGO, are the SVMs combining different sources
of information coming from the above metrics. The complete SNP&GO predictor
combines all the available sources of information: Seq, Prof, PANTHER, LGO. The
absolute standard deviations of the listed average values of the different scoring
indexes (after the cross validation procedure) ranged from 0.02 to 0.07.
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(Fig. 1). The conservation index is calculated as:

CIðiÞ ¼
X20

a¼1

ðfaðiÞ � faÞ
2

" #1=2

ð7Þ

where fa(i) is the relative frequency of residue a at mutated
position i and fa is the overall frequency of the same residue in the
alignment. The sequence profile is computed from the output of
the BLAST program, running on the uniref90 database (release
13.3 April 2008) (E-value threshold 5 1e�9, number of runs 5 1).
When sequence profile values at position i are missing we set the
frequencies of wild-type and mutant residue equal to 0.5, the
number of aligned sequence equal to 2; CI is calculated
accordingly and the extra bit value is set to 0.

Encoding the PANTHER Outputs

PANTHER consists of two main components: the PANTHER
library and the PANTHER index. The first one is a collection of
‘‘books’’ each representing a protein family as a multiple sequence
alignment, a Hidden Markov Model (HMM) and a family tree.
The second one is a slim ontology for describing molecular
functions and biological processes associated with the families.
There is a PANTHER application (csnpAnalysis1.0) that uses the
HMM family to classify mSNPs, according to their likelihood of
affecting the protein function. Because evolutionary-related
sequences are used to estimate the probability of a given residue
at a particular position in a protein, the method can be referred to
as generating ‘‘position-specific evolutionary conservation’’
(PSEC) scores. For our purposes, we extracted four features from
the PANTHER outputs to implement the ‘‘meta-predictor’’: the
probability of a mSNP being disease related (Pdel), the probability
of the wild-type residue (Pwt), the probability of substituted/
mutant amino acid (Psub), and the number of independent counts
(NIC), which is a measure of the global diversity of the sequences
over which a position has been conserved. When PANTHER
output features at position k are missing we adopted an a priori
guess of neutrality for mutations not scored, setting the values of
interest equal to: Pdel 5 0.5, Pwt 5 0.05, Psub 5 0.05, and NIC 5 1
(bit 5 0).

Computing the LGO Score

The GO log-odds score (LGO) is computed to derive informa-
tion related to the correlation among a given mutation type
(disease-related and neutral) and the protein function. The
annotation data are relative to the GO Database version 1.37 and
are retrieved at the Web resource hosted at European Bionformatics
Institute (EBI): www.geneontology.org/cgi-bin/downloadGOGA.pl/
gene_association.goa_human.gz. To compute LGO, first we derived
the GO terms (from all the three branches: Molecular Function,
Biological Process and Cellular components, when available) for all
our proteins in the data set (SP_human). For each annotated term
the appropriate ontology tree was traversed upward to retrieve all
the parent terms with the GO-TermFinder-0.8 tool (http://
search.cpan.org/dist/GO-TermFinder/) [Boyle et al., 2004] and
taking care of introducing a GO term only once. The information is
then derived by computing a log-odds score associated to each
protein:

LGO ¼ � log2½ðGTOðGOÞD þ 1Þ=ðGTOðGOÞN þ 1Þ� ð8Þ

where GTO (Gene ontology Term frequency of Occurrence) is the
frequency of occurrence of a given GO term for the disease-related

(D) and neutral mutations (N); the pseudocount 1 is added to
avoid undetermined ratios.

The LGOs are evaluated considering GTO values computed
over the training sets without including in the counts the GO
terms of the corresponding test set. This is done to crossvalidate
also this type of information.

Results

The Performance of SNPs&GO

To relate a mutation in a protein sequence to a disease, we may
take advantage of what machine learning and statistical methods
have taught us in the past 10 years or so of sequence analysis.
Among different computational methods, classifiers based on
support vector machines are among the most powerful for their
classification capabilities [Bishop, 2006]. Also, evolutionary
information, as derived from a sequence profile of the target
sequence to its homologs in the sequence databases, is of
fundamental importance for detecting mutations that affect
human health [Ramensky et al., 2002].

The main novelty described in this article with respect to
previous applications is the use of functional GO terms (Fig. 1).
An alternative way to include evolutionary information is to
exploit HMMs computed on specific protein families. For this
reason we adopt some features from the output of the PANTHER
Classification System, a unique resource that classifies genes by
their functions with HMMs [Thomas and Kejariwal, 2004].

The new input takes into account in a unique vector (Fig. 1)
different features derived from: (1) the mutation type and from
the local sequence environment where the mutation occurs (Seq).
The relevance of the inclusion of sequence information and
sequence profile was previously discussed [Capriotti et al., 2006];
(2) the sequence profile (Prof) [by evaluating the frequency of the
wild-type residue (Fwt), of the mutated residue (Fm), the number
of sequence in the alignment (Nal), and a conservation index (CI,
Equation 7)]; (3) the PANTHER outputs (PANTHER) (the Pdel;
the occurrence of Pwt; the Psub; the PANTHER measure of the
global diversity of the sequences over which a position is
conserved (NIC)); (4) the GO functional annotation system (after
computing a LGO; Equation 8).

Our new method is called SNPs&GO (classifying human SNPs
by including GO), and its necessity is demonstrated by
implementing different SVM predictors with an increasing level
of input complexity (Table 1). The training/testing set of
mutations (SP_human) was derived from the Swiss-Prot database
(release April 2008) (detailed in Materials and Methods) and
comprises 33,762 mutations from 7,265 proteins, including
neutral and disease-related mutations (17,432 and 16,330,
respectively). In Table 1 we list the results that are obtained
adopting a crossvalidation procedure under different implementa-
tion conditions on the same training/testing set. Performance is
measured by computing different scoring indexes: Q2, the overall
accuracy; P(D), the rate of correct predictions for the disease-
related mutations (D); Q(D), the coverage (number of correctly
predicted mutations) for the disease-related mutations; P(N), the
rate of correct predictions for the neutral mutations (N); Q(N),
the coverage for the neutral mutations; AUC, an estimate of how
the predictor is different from a random predictor characterised
by AUC 5 0.5 (for a detailed definitions of the indexes see
Materials and Methods).
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From this effort it can be concluded that the more sources of
information are collected the higher the performance scores are.
For a more general evaluation of the performance of SNPs&GO,
we also computed the receiver operating characteristic (ROC)
curves of the different SVMs and calculated the relative AUCs (see
the rightmost column of Table 1; AUC, and Fig. 2). From all the
index values, it is evident that SNPs&GO is endowed with a better
predictive performance than the other SVMs with less input
information, scoring with values of Matthews correlation
coefficient (C) and accuracy (Q2) 27 and 14 percentage points
higher than Seq, the basic predictor that implements only
sequence information. Also, the SNPs&GO area under the ROC
curve value (AUC) is 14 percentage points higher than that of Seq
(Fig. 2).

From Table 1 it is evident that the implementation of LGO on
top of the basic predictors, as well as on top of their respective
combination, promotes a better performance.

Specifically, the implementation of LGO on top of Seq1Prof1

PANTHER improves Q2 and C values by 0.04 and 0.07,

respectively, indicating that the addition of functional information

is crucial for improving the scoring indexes. For a given mutation

in the protein sequence SNPs&GO returns the probability value of

being disease-related or not. The value is then used to calculate the

Reliability Index (RI) (see Materials and Methods). In

Figure 3, Q2 and C values are plotted as a function of the RI

values. From this, it appears that when the RI value is 5, over 70%

of the SP_human database can still be predicted with Q2 and C

values equal to 0.9 and 0.74, respectively.
Recently we described a SVM implementation that includes the

evolutionary selective pressure as an additional piece of informa-
tion to the input code (SeqProfCod [Capriotti et al., 2008]). The
evaluation of the evolutionary selective pressure is done at the
codon level and it needs to be precomputed given its complexity
and computational cost. To assess the efficacy of the GO terms we
therefore tested SeqProfCod and SNPs&GO on a subset of
mutations for which the evolutionary selective pressure values
were made available after computing with the procedure
previously described (Capriotti et al., 2008, http://sgu.bioinfo.
cipf.es/services/Omidios/). The testing subset was some 28% of
the all data set of mutations described in this article, containing
9,544 mutations (in 1,826 proteins), 6,282 of which are disease-
related. It should be also stressed that all the different
implementations during the experiment were used adopting a
rigorous crossvalidation procedure. The data are shown in

Table 2. It is evident that the addition of different features only
at the protein level, including GO terms (SNPs&GO), are
sufficient to obtain a score higher than SeqProfCod (first three
rows in Table 2). Furthermore, the addition of the information
derived from the evolutionary selective pressure computed at the
codon level (1Cod) on top of SNPs&GO (SNPs&GO1Cod) is
not significantly increasing the predictive performance. For this
reason, we focus on SNPs&GO that includes the information that
can be computed at the sequence level. For sake of comparison we
also tested our predictor on previous sets adopted to score
SeqProfCod. The results (last four rows in Table 2) confirm
the improvement obtained by exploiting the information of the
GO terms.

A Benchmark with Other Methods

We compare our method with others, commonly used, available
in the Web and downloadable for in-house implementation such
as SIFT [Ng and Henikoff, 2003] and PANTHER [Thomas et al.,
2003], or making available precalculated data such as PolyPhen
[Ramensky et al., 2002] and Eremorph [Kulkarni et al., 2008]
(Table 3). PolyPhen is based on a decision tree, and takes into
account information derived by structural parameters, functional
annotations, and sequence alignments. SIFT makes predictions on
the basis of sequence homology, while PANTHER exploits HMM
models of protein families and evaluates the residue conservation
in a given protein family. Eremorph exploits different parameters
of interspecies nucleotide conservation coupled with the BLO-
SUM [Henikoff and Henikoff, 1992] and PAM [Dayhoff et al.,
1978] substitution matrix-scoring indexes. As indicated in the
rightmost column of Table 3, not all the predictors are able to
make predictions for the entire data set. We also compare
SNPs&GO with our previous method (HybridMeth [Capriotti
et al., 2006]) based only on sequence and profile information. It
appears that SNPs&GO outperforms all previous implementa-
tions, including ours. The benchmarking also indicates that one of
the advantages of our present implementation is the possibility of
predicting all the mutations of the data set in real time and in an
interactive way (see the Web site of SNPs&GO at http://snps-and-
go.biocomp.unibo.it).

Scoring the Prediction in Relation to Different Morbidities

In Table 4 the ability of the predictor is scored (Q[D], coverage)
with respect to the number of mutations in database related to a

Figure 2. The ROC curves of the different predictors. The ROC curve of the SNPs&GO method is compared with those of the other predictors
whose performance is reported in Table 1. (a) SNPs&GO versus Seq, Prof, LGO, and PANTHER. (b) SNPs&GO versus Seq1Prof, Seq1LGO, Seq
1PANTHER. (c) SNPs&GO versus Seq1Prof1LGO, Seq1Prof1PANTHER, Seq1LGO1PANTHER. FPR and TPR are the false and the true
positive rates, respectively (see Materials and Methods for definition).
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given type of diseases. The disease classification is derived from a
previous work [Goh et al., 2007]. Apparently SNPs&PGO is better
performing in the prediction of some types of diseases:
respiratory, skeletal, cardiovascular, connective_tissue, bone,
dermatological, metabolic, multiple, ear_nose_throat. For muta-
tions linked to these diseases, the general level of accuracy is
higher than 78% (compare with the overall SNPS&GO perfor-
mance in Table 1). Somewhat lower levels of coverage are obtained
for families of disease like: ophthamological, gastrointestinal,
neurological, renal, hematological, muscular, cancer, and immu-
nological. The results seem to be uncorrelated with the number of
mutations in the different subsets.

The table list also the most significant GO terms (with LGO
values Z1) corresponding to each disease type that were
highlighted with our analysis. The listed GO terms are the top
scoring for each of the two GO functional branches (biological

process and molecular function). Apparently subcellular localiza-
tion (the third seed of functional terms in GO) is not significant.
The biological processes well correlate with the disease type and
the transcription factor activity is the most shared molecular
function. In any case, these results indicate that even under the
worst conditions the value of the type-specific index is not very far
from that evaluated on the overall data set of mutations.

Discussion

The enormous number of human SNPs available in the
databases and the ongoing jump in data volumes caused by
ultrahigh-throughput sequencing (deep sequencing) poses the
question of relating mutations to diseases. In this article, we
propose a new SVM-based method that, starting from the protein
sequence, uses different pieces of information, including that
derived from the GO annotation of the protein to predict if a
given mutation can be classified disease-related or not. This step
can be important in prioritisation studies when SNPs need to be
annotated for the selection of candidates genes in relation to a
disease phenotype.

For the first time we present a GO-integrated predictor tested
and trained with a stringent crossvalidation procedure. SNPs&GO
was trained on a set of more than 33,000 annotated mutations in
proteins, much larger than available before, and tested with a
crossvalidation procedure over sets in which similar proteins were
kept in the same data set also for the calculation of the LGO score,
as derived from the GO database. With increasing complexity of
information, the performance is enhanced, suggesting that in
addition to the sequence profile, the LGO data derived from GO
annotation improves our ability to discriminate neutral and
disease-related SNPs. This adds to a previous analysis [Capriotti
et al., 2008] in which we exploited the relevance of selective
pressure as computed at the DNA level. However, at present, a
wide-scale computation of parameters indicative of selective
pressure is not feasible. We therefore confine the analysis at the
protein level, describe the added value of GO terms to the
prediction process, and compare with other available predictors in
the Web. The finding that the level of performance increases with
increasing information added to the input corroborates the notion
that support vector machines can capture all the correlations
existing in complementary knowledge. The benchmark that we

Table 2. Go Terms versus Evolutionary Selective Pressure at
the Codon Level

Method Q2 P[D] Q[D] P[N] Q[N] C Dataset

SeqProfCoda 0.76 0.83 0.80 0.64 0.69 0.48 Intersection

SNPs&GOb 0.82 0.84 0.89 0.76 0.68 0.59 Intersection

SNPs&GO1Codc 0.83 0.85 0.89 0.77 0.70 0.60 Intersection

SeqProfCoda,d 0.82 0.88 0.84 0.68 0.77 0.59 Dec05d

SNPs&GOb,e 0.87 0.90 0.88 0.72 0.77 0.65 Dec05

SeqProfCoda,d 0.74 0.65 0.78 0.83 0.72 0.48 Dec06d

SNPs&GOb,e 0.87 0.86 0.82 0.88 0.90 0.73 Dec06

aThe method has been previously described [Capriotti et al., 2008] and includes on
top of SeqProf information derived by computing the evolutionary selective pressure
at the codon level.
bThis article.
cThe predictor with the same input as the one depicted in Figure 1, and one extra
node to include selective pressure [Capriotti et al., 2008]. Intersection: the fraction of
the all data set (28%) for which selective pressure parameters were available at http://
sgu.bioinfo.cipf.es/services/Omidios (see text).
dResults previously published and obtained adopting a crossvalidation procedure on
smaller sets than the one described in this artricle [Capriotti et al., 2008].
eObtained from http://snps-and-go.biocomp.unibo.it.

Figure 3. Overall accuracy and Matthews correlation coefficient
of SNPs&GO as a function of Reliability Index (RI). Overall accuracy
(Q2) and Matthews correlation coefficient (C) of SNPs & GO are
plotted as a function of the RI of the prediction. DB is the fraction of
SP_human data set with RI values Z of a given threshold.

Table 3. Bench Marking of SNPs&GO with Other Predictive
Methods

Method Q2 P[D] Q[D] P[N] Q[N] C PM (%)

PolyPhena 0.71 0.76 0.75 0.63 0.64 0.39 58

SIFTb 0.76 0.75 0.76 0.77 0.75 0.52 93

PANTHERc 0.74 0.77 0.73 0.71 0.76 0.48 76

Eremorphd 0.74 0.83 0.64 0.68 0.85 0.50 82

HybridMethe 0.74 0.74 0.70 0.74 0.77 0.47 100

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100

aDownloaded from the Web server http://genetics.bwh.harvard.edu/pph/data/
index.html.
bDownloaded from http://blocks.fhcrc.org/sift/SIFT.html.
cDownloaded from http://www.pantherdb.org/downloads/index.jsp.
dOur previous implementation [Capriotti et al., 2006]. Performances are computed
by training/testing on the SP_human data set (see Materials and Methods). Only
HybridMeth and SNPs&GO are scored with a real crossvalidation procedure, because
all the others were trained on sets that were possibly homologous to ours. PM is the
percentage of predicted mutations. For the definition of the scoring indexes see the
Materials and Methods section.
eDownloaded from the web server http://discovery.swmed.edu/eremorph/. Down-
loadable (a and c) predictors were run locally; otherwise, data are retrieved via Web
server queries (a and d).
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performed in-house indicates that presently SNPs&GO is one of
the best-scoring classifiers available for predicting whether a
mutation at the protein level is or is not disease related.

The prediction accuracy was also sorted by disease type, and we
found (Table 4) that it is rather independent of the morbidity.
Furthermore, the most significant GO terms highlighted by our
procedure well correlates with the disease type. These findings, all
together, corroborate the view that our classifier on the basis of the
input complexity that include the sequence function, is general
enough to well discriminate whether a SNP occurring in a protein
is disease related or not, rather independently of the disease type.
The predictor is available for testing at http://snps-and-go.
biocomp.unibo.it.
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