
[11:32 21/3/2011 Bioinformatics-btr093.tex] Page: 1086 1086–1093

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 8 2011, pages 1086–1093
doi:10.1093/bioinformatics/btr093

Structural bioinformatics Advance Access publication February 23, 2011

All-atom knowledge-based potential for RNA structure prediction
and assessment
Emidio Capriotti1,†,‡, Tomas Norambuena2,3,†, Marc A. Marti-Renom1,∗
and Francisco Melo2,3,∗
1Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Principe Felipe,
46012 Valencia, Spain, 2Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas,
Pontificia Universidad Católica de Chile, Alameda 340 and 3Molecular Bioinformatics Laboratory, Millennium Institute
on Immunology and Immunotherapy, Santiago, Chile
Associate Editor: Ivo Hofacker

ABSTRACT
Motivation: Over the recent years, the vision that RNA simply
serves as information transfer molecule has dramatically changed.
The study of the sequence/structure/function relationships in RNA
is becoming more important. As a direct consequence, the total
number of experimentally solved RNA structures has dramatically
increased and new computer tools for predicting RNA structure
from sequence are rapidly emerging. Therefore, new and accurate
methods for assessing the accuracy of RNA structure models are
clearly needed.
Results: Here, we introduce an all-atom knowledge-based potential
for the assessment of RNA three-dimensional (3D) structures. We
have benchmarked our new potential, called Ribonucleic Acids
Statistical Potential (RASP), with two different decoy datasets
composed of near-native RNA structures. In one of the benchmark
sets, RASP was able to rank the closest model to the X-ray structure
as the best and within the top 10 models for ∼93 and ∼95% of
decoys, respectively. The average correlation coefficient between
model accuracy, calculated as the root mean square deviation and
global distance test-total score (GDT-TS) measures of C3′ atoms, and
the RASP score was 0.85 and 0.89, respectively. Based on a recently
released benchmark dataset that contains hundreds of 3D models
for 32 RNA motifs with non-canonical base pairs, RASP scoring
function compared favorably to ROSETTA FARFAR force field in the
selection of accurate models. Finally, using the self-splicing group I
intron and the stem-loop IIIc from hepatitis C virus internal ribosome
entry site as test cases, we show that RASP is able to discriminate
between known structure-destabilizing mutations and compensatory
mutations.
Availability: RASP can be readily applied to assess all-atom or
coarse-grained RNA structures and thus should be of interest to
both developers and end-users of RNA structure prediction methods.
The computer software and knowledge-based potentials are freely
available at http://melolab.org/supmat.html.
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1 INTRODUCTION
Over the recent years, the vision that RNA molecules only serve
as a genetic information carrier has dramatically changed. Today, it
is widely accepted that most of the genome is actively transcribed
(Wong et al., 2001) and that non-coding RNA molecules would
have key functional roles in several fundamental cell processes such
as cell division, growing and differentiation (Storz, 2002). Indeed,
RNA molecules are now known to carry diverse functions, such
as catalysis (Staple and Butcher, 2005), transcription regulation
(Doudna and Cech, 2002) and chromosome repair (Storici et al.,
2007), among others.

In this context, experimental determination of RNA three-
dimensional (3D) structures has become an essential tool for
characterizing the functional activity of new RNA molecules. As a
direct consequence of this, the number of RNA structures deposited
in the Protein Data Bank (PDB) has rapidly increased over the
past few years, reaching now over 1800 structures (Berman et al.,
2002). Additionally, new computational tools for the assessment,
prediction and comparison of RNA structures have been recently
developed (Capriotti and Marti-Renom, 2008b, c, 2009; Das and
Baker, 2007; Dror et al., 2006; Ferre et al., 2007; Parisien and
Major, 2008; Sharma et al., 2008). Therefore, the total number
of RNA structures—either solved by experiment or predicted by
computer-based methods—is expected to continue to increase at
a high rate (Capriotti and Marti-Renom, 2008b). This fact poses
the urgent need for developing accurate RNA structure assessment
methods and tools. The development of new methods for assessing
the accuracy of RNA structure models can benefit from previous
experience gathered in the field of protein structure prediction and
assessment. One of the most popular approaches to assess the quality
of 3D protein structures has been the use of knowledge-based or
statistical potentials (Capriotti and Marti-Renom, 2008a; Ferrada
and Melo, 2007, 2009; Ferrada et al., 2007; Melo and Feytmans,
1998, 2008; Melo and Marti-Renom, 2006; Melo and Sali, 2007;
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Sippl, 1993b). However, a drawback of this methodology is that it
ideally requires a non-redundant set with several dozens to hundreds
of experimentally solved structures (Melo et al., 2002; Sippl, 1990),
which in the case of RNA may be difficult to obtain because most
of the known RNA molecules available in the PDB are highly
redundant at the sequence level. Despite this, a recent publication
has reported the first calculation of a knowledge-based potential
for RNA structure prediction and assessment (Jonikas et al., 2009).
This new knowledge-based scoring function for RNA structures,
named NAST, relies on a coarse-grained representation (i.e. C3′
atoms only) of RNA geometrical features (i.e. distances, angles and
dihedral angles) and it has been derived by calculating statistics
from only three experimental structures of large ribosomal units. The
NAST scoring function was used for successfully predicting coarse-
grained 3D structures of RNA sequences of varying length. NAST
was able to build RNA structure models averaging 8.0 and 16.3 Å
root mean square deviation (RMSD) for the yeast phenylalanine
tRNA and the P4–P6 domain of the Tetrahymena thermophila group
I intron, respectively (Jonikas et al., 2009). More recently, a full-
atom potential available within the ROSETTAsuite was successfully
used for the de novo prediction and design of non-canonical RNA 3D
structures (Das et al., 2010). This new full-atom potential contains
weak carbon hydrogen bonding and solvation terms, as well as a
complete description for potential hydrogen bonds between bases
and backbone oxygen atoms.

Here we introduce the description and development of a
new knowledge-based or statistical potential for RNA structure
prediction and assessment called Ribonucleic Acids Statistical
Potential (RASP), which has the following features: (i) it has been
derived from a non-redundant set of 85 RNA structures; (ii) it
has geometrical descriptors that explicitly account for base pairing
and base stacking interactions, both being important features that
contribute to the thermodynamic stability of native RNA structures;
(iii) it is a detailed full-atom potential that includes a representation
for local and non-local interactions in RNA structures; and (iv) some
of its key parameters have been optimized by calculating information
theory measures in the same set of native structures used to derive
the potential and not from a specific benchmark that may introduce
some bias in the optimization process (Ferrada and Melo, 2009; Solis
and Rackovsky, 2006, 2008). Moreover, we have built a new and
independent set of RNA structures, which was used to benchmark
the performance of RASP through the use of a jackknife procedure.
Our full-atom RASP potential was validated against other simpler
and coarse-grained RASP potentials, which were derived by using
common parameters, optimized with the same set of RNA structures
and tested in the same benchmarks. Finally, the RASP potentials
were also compared against the NAST and ROSSETTA potentials,
as well as the AMBER99 force field.

We begin this article by describing a new benchmark set of
RNA structures that was used by us to test the RASP, as well as
to optimize its parameters. We continue by showing the results
of the optimized potential scores in model ranking and accuracy
correlation tests. Next, we illustrate some energy score functions of
the RASP potential accounting for base pairing and base stacking
interactions. We continue by describing the results of RASP at
selecting near native models in a real RNA modeling scenario, by
assessing its performance at selecting accurate models in a dataset
of hundreds of 3D models of 32 RNA motifs with non-canonical
base pairs. Finally, we apply RASP to study the effects of mutations

(including compensatory mutations) in the self-splicing group I
intron of Azoarcus pre-tRNAIle and in the stem-loop IIIc of an
internal ribosome entry site (IRES) element from the hepatitis C
virus (HCV).

2 METHODS

2.1 Experimental RNA structures dataset
All crystallographic RNA structures deposited in the PDB (April 2009) were
collected and then filtered by removing structures shorter than 20 nucleotides
and solved at resolutions <3.5 Å. In a second step, the remaining structures
were clustered using the BLASTN program with default options except for
not filtering short alignments (Altschul et al., 1997). All redundant RNA
structures that aligned at least 80% of their sequences with sequence identities
>95% were removed. Finally, the remaining structures were also filtered to
remove any structure that formed base pairs between non-connected chains as
calculated by the 3DNA program (Lu and Olson, 2003, 2008). After applying
these filters, the final dataset contained 85 structural RNA chains, which were
used to calculate the RASP variants described in this work (Supplementary
Table S1). The list of PDB chain identifiers for each of the selected structures
is available as Supplementary Material at: http://melolab.org/sup-mat.html.

2.2 Decoy sets
The RASP variants have been tested using the randstr decoy set, which
was obtained by generating from the 85 native structures a set of Gaussian
restraints for dihedral angles and atom distances. We used eight RNAdihedral
angles (α, β, γ , δ, ξ, ζ for the nucleotide backbone, ν2 for the sugar ring and
χ for the base) and two pseudo dihedral angles (θ, η). In addition, distance
restraints were calculated considering all the intra-nucleotide backbone atom
(P, O5′, C5′, C4′, C3′, O3′) pairs <15 Å and all the intra-nucleotide base atom
pairs <10 Å. For each native RNAstructure, a set of 500 decoy structures was
built by randomly removing an increasing fraction of constraints generated
from the native RNA structure. To explore the space of alternative RNA
conformations, the probability threshold to remove a given structural restraint
was decreased using an exponential decay function. Each decoy was built
using the MODELLER computer program (Sali and Blundell, 1993) using
a subset of restraints as Gaussian potentials. The standard deviation values
for the Gaussian energy functions were set to π/4 for dihedral restraints and
0.5 Å for atomic distance restraints. The set of decoys of RNA structures and
sequences are available as supplementary data at: http://melolab.org/sup-
mat.html.

Additionally, a benchmark dataset containing hundreds of 3D RNAmodels
(Das et al., 2010) was used in this work to test RASP potential in a
real RNA structure prediction scenario. The benchmark set contains 407
structure models for 32 different RNA motifs containing non-canonical
base pairs. These structure models correspond to the five lowest energy
clusters obtained with FARFAR force field from ROSETTA (Das et al.,
2010). This dataset was downloaded from the Das Group Web site at:
http://www.stanford.edu/∼rhiju/data.html.

2.3 The RASP variants
Four different knowledge-based potentials were calculated (Supplementary
Table S1). The main difference between them was the number and type of
atoms used to represent a RNA nucleotide. A detailed description of the
calculation and the optimization of the knowledge-based potentials, and
also the accuracy measures used to test their performance are provided
as Supplementary Material. For all RASP variants, the computer software
takes as input a single chain RNA structure in PDB format and outputs a
RASP score profile, the total score and the total number of interactions that
contributed to it. The total RASP score is the sum of the individual scores
of all interactions found within an RNA molecule. In the tests reported here
for RASP, the total normalized score was used, which corresponds to the

1087

 at Periodicals D
epartm

ent/Lane Library on April 8, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[11:32 21/3/2011 Bioinformatics-btr093.tex] Page: 1088 1086–1093

E.Capriotti et al.

total score divided by the total number of interactions that contributed to
that score. In the case of the mutant examples (see section 3.5), the total
raw score was used. Finally, it is important to mention that, to avoid biases
in the benchmark results, a jackknife procedure was always used when
assessing a RASP potential. Such procedure implied the removal of the
structure being evaluated from the set used to derive the potential. Thus,
85 different potentials were calculated for each of the four RASP variants
assessed (i.e. a total of 340 potentials).

2.4 Other tested RNA potentials
The AMBER (Wang et al., 2000) pseudo-energies were calculated after
a minimization procedure of 500 ps using the GROMACS package (Van
Der Spoel et al., 2005). The minimizations were performed using implicit
solvent models represented by generalized Born formalism. The Born radii
were calculated using the Still algorithm (Qui et al., 1997). All simulation
parameters in GROMACS were selected by default except for emtol, emstep
and nstcgsteep that have been set to 10−5, 10−1 and 103, respectively.
ROSETTA (Das et al., 2010) was used with and without a few steps of
energy minimization based on a computer script provided by the authors.
NAST (Jonikas et al., 2009) and RASP variants were used to calculate
the energy score of the decoys without any modification of their original
conformations.

3 RESULTS

3.1 Calculation and optimization of the potentials
To assess whether RASP accuracy was dependent on its resolution,
we calculated four different statistical potentials, ranging from
coarse-grained descriptions to a full-atom potential (Supplementary
Table S1). Such dependency, known to affect statistical potentials
derived from protein structures (Melo and Feytmans, 1997; Melo
and Marti-Renom, 2006; Melo et al., 2002), is relevant when a
small number of non-redundant RNAstructures is available (i.e. only
85 structures). It is important to note that for deriving a statistical
potential, the total number of distinct particles or atom types
increases linearly, but the size of the pairwise interaction matrix
increases quadratically. Such effect quickly leads to sparse data
and poor statistics when using a finite data source. Therefore, in
addition to the full-atom potential (named RASP-ALL) representing
each nucleotide with all its non-hydrogen atoms (Supplementary
Table S2 and Fig. S2), we also calculated the following three
coarse-grained potentials (Supplementary Table S1): (i) RASP-C3,
representing each nucleotide with its C3′ atom (Supplementary
Table 3 and Fig. S3); (ii) RASP-BB, representing each nucleotide
with its backbone atoms (Supplementary Table 3 and Fig. S4); and
(iii) RASP-BBR, representing each nucleotide with its backbone
and ribose atoms (Supplementary Table 3 and Fig. S5). All these
RASP variants include the topological factor parameter k that
is used to differentiate between local and non-local interactions
by accounting for the sequence separation of the interacting
atoms (Ferrada and Melo, 2007; Ferrada et al., 2007; Melo and
Feytmans, 1998; Sippl, 1990). The selection and definition of
the optimal sequence separation threshold for each potential was
based on the information product values (Ferrada and Melo,
2009; Solis and Rackovsky, 2006, 2008) and defined as the value
that caused an incremental information product gain smaller than
5% (Supplementary Material). The optimal sequence separation
threshold for each of the four potentials was 8, 4, 4 and 5 for
RASP-C3, RASP-BB, RASP-BBR and RASP-ALL, respectively
(Supplementary Fig. S6). Each of the RASP potential variants was

then derived and used with its corresponding optimal topological
factor threshold value (Supplementary Table S1).

3.2 Accuracy of RASP variants
To evaluate the accuracy of RASP variants in identifying native
RNA structures, we performed a leave-one-out or jackknife protocol
consisting in removing a specific RNA structure from the benchmark
dataset, recalculating the potential from the remaining 84 native
RNA structures and then using it to assess the removed RNA
structure. Thus, this procedure, which was repeated 85 times for
each RASP potential, ensured that a specific potential was not biased
towards the structure being evaluated. Using the randstr benchmark
dataset, RASP-C3, RASP-BB, RASP-BBR, RASP-ALL, NAST,
ROSETTA, ROSETTA_min (i.e. with a few energy minimization
steps before calculating the final energy score) scored with the
lowest energy 8, 35, 89, 93, 22, 62 and 85% of the native RNA
structures, respectively (Supplementary Table S4). Their accuracy
increased to 32, 78, 93, 95, 65, 75 and 100%, when the native RNA
sequence/structure pair was ranked within the 10 lowest energy
scores (Supplementary Table S4). The use of ROSETTA with few
steps of energy minimization previous to the calculation of the final
energy score (ROSETTAmin) resulted in an improvement over using
it without the energy minimization steps (ROSETTA). Energy scores
obtained with AMBER99 force field, after a few steps of energy
minimization, correctly ranked 73 and 88% of the native structures
with the top and top 10 energy scores, respectively (Supplementary
Table S4).

To test whether the energy score of RASP potentials correlate
with the observed structural deviation from the native conformation
(Fig. 1), we calculated two structural deviation measures for each
decoy model in the randstr benchmark set (C3′ RMSD and the
GDT-TS after the optimal structure superposition of the model and
the native structure). Energy scores obtained with RASP-BB, RASP-
BBR and RASP-ALL potentials resulted in an average correlation
of 0.82, 0.84, 0.89 with RMSD and 0.85, 0.88, 0.91 with GDT-
TS, respectively. However, RASP-C3, NAST and ROSETTA energy
scores resulted in an average correlation of 0.56, 0.43, 0.41 with
RMSD and 0.57, 0.42, 0.43 with GDT-TS, respectively.As expected,
ROSETTAmin resulted in higher correlation coefficients than
ROSETTA (0.64 with RMSD and 0.68 with GDT-TS, respectively),
but still below those obtained with the RASP potentials. AMBER99
energy scores, with a few steps of energy minimization, resulted in
average correlation values of 0.48 and 0.49 with RMSD and GDT-TS
measures, respectively (Fig. 1). The accuracy of RASP significantly
increased when a higher resolution was used (i.e. larger number of
atom types used to build the potential). The observed differences
of the correlation coefficients between the different potentials were
statistically significant in almost all cases (Supplementary Tables S5
and S6). The detailed correlation plots of all decoys for each of the
85 native RNA structures with RMSD and GDT-TS for all RASP
variants are provided as Supplementary Data.

3.3 Implicit description of base pairing and base
stacking geometry in potential energy functions

The AU and CG Watson–Crick base pairs and base stacking are the
most common type of interactions in RNA structures and contribute
to stabilize native conformations (Yang et al., 2003). Depending on
the nucleotide type, different atoms can be involved. For example, in
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Fig. 1. Correlation tests. Box and whisker plots illustrating the distribution
of the Pearson’s correlation coefficients for the potential scores and the
structural deviation between the decoys and the native RNA structures in the
randstr dataset. (A) Pearson correlation coefficient between energy scores
and the RMSD of C3′ atoms. (B) Pearson correlation coefficient between
energy scores and the GDT-TS of C3′ atoms. The central rectangle spans
the first quartile to the third quartile (the interquartile range). The segment
inside the rectangle indicates the median and ‘whiskers’ above and below the
box indicate the locations of the boundaries after which outliers are defined.
Outliers are represented by the ‘+’ symbol. Suspected outliers are shown as
half-filled circles.

canonical Watson–Crick base pairs, the interactions between N1–N3
are observed for each base pair. Interactions between O2–O6 and
O2–N6 are only observed for base pairs C–G and A–U, respectively.
However, additional non-canonical base pairs can also be often
observed in RNA structures (Gendron et al., 2001; Olson et al.,
2009). These non-canonical base pairs include the G–U and U–U
Wobble, G–A sheared, A–U Hoogsteen and G–A Watson–Crick. For
example, in the G–U Wobble base pair hydrogen bonding occurs
between N2–O4, O2–O6 and N1–N3.

Such interactions (canonical and non-canonical) are well captured
by the RASP-ALL potential (Fig. 2). These main stabilizing base pair
interactions result in energy score functions with a defined energy
score minimum at about 2.7–2.9 Å. In addition to base pairing, the
RASP-ALL potential also captures the underlying geometry that
occurs at the base stacking of consecutive bases within a single
RNA chain. In this case, the energy score minimum of a function that

Fig. 2. Example energy score functions of RASP-ALL potential. Pairs of
interacting atom types are shown in the inset legend of the graphs. The type of
interaction being described is graphically illustrated at the right side of each
graph. Top Panel: hydrogen bonding energy score of base pairing geometry
in canonical Watson–Crick pairs (A–U and C–G), non-canonical Hoogsteen
base pairs (A–U) and non-canonical Watson–Crick A–G pair for non-local
potentials (i.e. topological factor or k ≥ 6). Mid panel: hydrogen bonding
energy score describing non-canonical base pairs such as Sheared (A–G),
Wobble (G–U and U–U) and non-canonical Watson–Crick A–C pair for non-
local potentials. Bottom panel: energy score for the interaction of atom types
21 versus 21 at different topological factors illustrating geometrical aspects
of the base stacking in RNA.

describes a typical atomic interaction that occurs in base stacking
show a clear dependence on the topological factor parameter in the
RASP-ALL potential (Fig. 2). That is, the distance at which the
energy score minimum occurs periodically increases with the values
of the topological factor parameter.

3.4 Ranking near-native RNA models with
non-canonical base pairs

A difficult and important challenge in current RNA structure
prediction is the selection of near-native conformations that contain
non-canonical base pairs (Das et al., 2010). To test whether RASP-
ALL was capable of properly ranking near-native conformations
of RNA motifs containing non-canonical base pairs, we used a
recently published benchmark set of 407 structure models for 32
RNA motifs built with ROSETTA (Das et al., 2010). For each of
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Fig. 3. RMSD differences between the lowest energy score model by
ROSETTAmin or RASP-ALL and the most accurate model in the dataset.
The 17 cases below the diagonal (black dots) correspond to the cases where
RASP-ALL selected a more accurate model compared to ROSETTAmin.
The 13 cases above the diagonal (white dots) correspond to the cases where
ROSETTAmin selected a more accurate model compared to RASP-ALL. In
two cases (gray square) RASP-ALL and ROSETTAmin returned the same
result.

the 407 RNA structure models, we calculated the total energy score
with RASP-ALL and ROSETTAmin and selected the lowest energy
score model according to each potential (Fig. 3; Supplementary
Table S7). ROSETTAmin and RASP-ALL were able to accurately
select the best model produced by ROSETTA in 1 and 7 RNA motifs,
respectively. ROSETTAmin was able to select a more accurate
model (i.e. with lower RMSD) than RASP-ALL in 13 out of the 32
motifs. Alternatively, RASP-ALL was able to select more accurate
model than ROSETTAmin in 17 out of the 32 motifs. For two RNA
motifs both scoring functions returned the same solution, which
was structurally close to the best model generated by ROSETTA
(Fig. 3; Supplementary Table S7). The calculated energy scores for
each model in this benchmark set are available as Supplementary
Material.

3.5 Assessing the folding stability of RNA structures
with RASP-ALL potential

The discovery of the RNA self-splicing group I intron provided
the first example of a non-protein molecule with enzymatic activity
(Kruger et al., 1982). Recently, the self-splicing group I intron
in Azoarcus pre-tRNAIle was studied by perturbing its tertiary
interactions with site-directed mutagenesis (Chauhan and Woodson,
2008). In particular, the tetraloop-receptor interactions bridging
two major helical domains were destabilized with the A190U
(GUAA) and A190U/A191G (GUGA) mutants, which affected the
interaction with the J5/5a region. Non-denaturing gel electrophoresis

experiments demonstrated that wild-type ribozyme (GAAA) folded
with an intermediate state that migrated at the same speed than
the native conformation. However, mutations introduced in the P9
region disfavored the formation of native-like intermediates and
increased the conformation heterogeneity of the RNA population.
Experimental data also showed that the GUGA mutant migrated
slowly with respect to GUAA mutant (Chauhan and Woodson,
2008). We have applied RASP-ALL potential to the analysis of the
effect that a point mutation could have in the structure stability of
this self-splicing group I intron (Table 1).

The 3D structure of the ribozyme from Azoarcus was solved with
a resolution of 3.1 Å (Adams et al., 2004) and was used here as
template to model the 3D structures of the studied mutants using the
MODELLER program (Sali and Blundell, 1993). The RASP-ALL
profiles for the whole structure differed only in the mutated region
(P9 loop) as well as other interacting loops (i.e. J5/5a loop). GUAA
and GUGA mutants resulted in higher RASP scores. The wild-type
structure resulted in difference of the total energy score of 267 and
232 kT units for GUAA and GUGA mutants, respectively (Table 1).
Such differences did not only account for the contribution of the
region mutated but also for the interacting J5/5a region.

To discard the possibility that the increased RASP energy
scores observed in the GUGA and GUAA mutants were a direct
consequence of modeling artifacts, we decided to build five
additional models of the pre-tRNA-Ile molecule including known
compensatory mutations (Costa and Michel, 1997) in the P8 region
of the pre-tRNA-Ile molecule (Adams et al., 2004). The selected
compensatory mutations were observed with a high frequency after
several rounds of in vitro selection (Costa and Michel, 1997) and
corresponded to: C146A/G164U, C146G/G164U, C146U/G164A,
G151A/U160A and G151A/U160C. RASP-ALL energy scores
obtained for these compensatory mutants show that C146G/G164U
mutant was stabilized by ∼99 kT units compared to the wild-type
(Table 1). The other four mutants have energy scores higher than
the wild-type, but in the range between ∼45 and ∼98 kT units.
Thus, the magnitude of these energy differences was between 2.4
and 6.0 folds smaller than those observed for the GUGA and
GUAA mutants described above (Table 1). Altogether, the results
indicate that the RASP-ALL energy scores for the GUGAand GUAA
mutants are not simply a direct consequence of structure modeling
artifacts.

Finally, the accuracy of the RASP-ALL potential was assessed
using the stem-loop IIIc from the IRESs found in HCV. The 3D
structure of the IRES (PDB code 1IDV) has been previously solved
by Nucleic Magnetic Resonance spectroscopy (Rijnbrand et al.,
2004). In the absence of any other canonical translation factors, the
IRES binds to both the 40S ribosomal subunit and the eukaryotic
initiation factor 3 (Kieft et al., 2001). Thus, the functionally of
IRES can be easily tested through in vitro translational assays using
bicistronic RNA encoding reporter elements. Five mutants of IRES
element with higher translational activity compared to the wild-type
sequence have also been characterized (Rijnbrand et al., 2004).
These mutants are: G3A-C8U, C4U-G7A, C4A-G7U, G5A and
U6A. Translational activity of the IRES element is conditioned to
the stability of its loop IIIc. We have used the MODELLER program
to build the 3D structures of the five described mutants, which were
assessed by the RASP-ALL potential (Table 1). The assessment
of the C4U-G7A, C4A-G7U, G5A and U6A mutations resulted
in more favorable RASP-ALL energy scores ranging 119–268 kT
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Table 1. Assessment of folding stability of RNA structures

RNA molecule Mutant phenotype Mutant description Energy score
(kT units)

Energy score
differencea

(kT units)

Relative
translationb

(%)

Data source

Pre-tRNAIle – Wild-type −95514.9 – – Adams et al., 2004
Pre-tRNAIle Destabilizing A190U −95247.5 267.4 – Chauhan and Woodson, 2008
Pre-tRNAIle Destabilizing A190U/A191G −95282.7 232.2 –
Pre-tRNAIle Compensatory C146A/G164U −95470.3 44.6 – Costa and Michel, 1997
Pre-tRNAIle Compensatory C146G/G164U −95614.1 −99.2 –
Pre-tRNAIle Compensatory C146U/G164A −95427.4 87.5 –
Pre-tRNAIle Compensatory G151A/U160A −95479.0 35.9 –
Pre-tRNAIle Compensatory G151A/U160C −95417.2 97.7 –
HCV-IIIc-loop-IRES – Wild-type −1998.3 – 100 Rijnbrand et al., 2004
HCV-IIIc-loop-IRES Increased activity G3A-C8U −1967.3 31.1 115
HCV-IIIc-loop-IRES Increased activity C4U-G7A −2151.2 −152.9 140
HCV-IIIc-loop-IRES Increased activity C4A-G7U −2147.9 −149.6 140
HCV-IIIc-loop-IRES Increased activity G5A −2117.6 −119.3 110
HCV-IIIc-loop-IRES Increased activity U6A −2266.4 −268.0 150

aThe total RASP-ALL energy score of the wild-type structure was subtracted from the total energy score of the mutant.
bThese values were extracted from Figures 7B, C and D in Rijnbrand et al., 2004.

of increased stability. Only one mutant (G3A-C8U) resulted in a
structure with less favorable RASP-ALL energies (∼31 kT units).

4 DISCUSSION
To date, few computational tools have been developed and are
freely available to assess the accuracy of RNA structures. Among
those, the NAST (Jonikas et al., 2009) and ROSETTA (Das
et al., 2010) tools were recently developed and have proven
to be useful in the assessment and prediction of RNA 3D
structures. In this work we have developed a new knowledge-based
potential by using a list of 85 non-redundant experimental RNA
structures. Despite the limited number and size of currently known
experimental RNA structures, our potential called RASP was able
to accurately discriminate between near-native and misfolded RNA
structures.

RASP has several unique features that can render it as a
complementary tool to the existing ones. RASP has been optimized
by means of information product maximization, a single measure
that has strong support from the field of information theory. As it has
been previously demonstrated, this strategy allows for an elegant and
unbiased optimization of knowledge-based potentials (Ferrada and
Melo, 2009; Solis and Rackovsky, 2000, 2002, 2006, 2008). RASP
inherits key parameters that have proven to be successful in the
related field of protein structure assessment and prediction (Ferrada
and Melo, 2007; Ferrada et al., 2007; Melo and Feytmans, 1997;
Melo et al., 2002; Sippl, 1990, 1993a, 1995). These parameters are
the distance-dependent geometrical descriptions for atom pairs in a
molecule (Melo et al., 2002; Sippl, 1990), the topological factor
or sequence separation to split local from non-local interactions
(Melo and Feytmans, 1997; Melo et al., 2002; Sippl, 1990, 1996)
and the use of properly defined atom types to reduce the matrix
size and avoid sparse data (Melo and Feytmans, 1997; Melo and
Marti-Renom, 2006; Melo et al., 2002). In addition to this, RASP
has been calculated from a dataset of experimental structures that
is larger and more diverse than those used in previous efforts. Our
RNA structure dataset is representative of the currently known RNA

structural space, as highly redundant structures have been removed
from the final dataset. RASP describes the geometrical restraints that
naturally arise in base pair formation through hydrogen bonding and
base stacking through π–π interactions (Lu and Olson, 2003, 2008;
Zheng et al., 2009). More importantly, RASP not only describes the
canonical Watson–Crick base pairs, but also the non-canonical pairs
that are highly abundant in native RNA structures (Olson et al.,
2009). Moreover, the RASP scores were highly correlated with
the structural deviation from native conformations. It is expected
that as more non-redundant RNA structures become available,
the accuracy and performance of a potential such as RASP will
improve. Meanwhile, RASP can assist the accuracy evaluation of
predicted RNA structure models by computer-based techniques as
well as in assessing the quality of experimental RNA structures, as
demonstrated by the three real-case examples analyzed here.

Despite of the important features described above, the current
version of RASP has limitations that need further improvements.
For example, the incorporation of a solvation term would allow
for a more accurate description of the energy in highly unfolded
and non-compact RNA conformations. In the case of proteins, this
term clearly contributes to improve the performance of knowledge-
based potentials in the assessment and prediction of 3D structures
(Melo and Feytmans, 1998; Melo and Sali, 2007; Melo et al.,
2002; Sippl, 1993a, b). Additionally, deriving RASP from a larger
and more diverse set of RNA structures would likely result in
a more accurate knowledge-based potential, as it has also been
demonstrated for proteins (Melo and Feytmans, 2008; Melo et al.,
2002). Unfortunately, experimental difficulties for working with
RNA using either X-Ray crystallography or nuclear magnetic
resonance spectroscopy have resulted so far in a limited number
of determined structures.

Although with outlined limitations, the results obtained here
using two different benchmarks demonstrate that RASP still is a
competitive potential when compared to NAST, ROSETTA and
AMBER force fields. Future improvements of RASP will certainly
attempt to overcome the two drawbacks mentioned above, as well as
the ability to perform energy score minimizations with this potential
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function. The results obtained here with ROSETTA force field have
clearly demonstrated how important it is to perform a few steps of
energy minimization prior to calculate the final energy score of the
structure.

It is important to note that we have benchmarked the RASP,
NAST, ROSETTA and AMBER scoring functions using a non-
redundant (at 95% sequence identity) dataset of RNA structures.
Unfortunately, using a more strict sequence identity cut-off resulted
in the removal of a very large number of RNAstructures, which made
the derivation of a knowledge-based statistical potential impractical.
We recognize that such limitation could have an impact in the
benchmark sets used to test the performance of the potentials. Even
if a jackknife method was used for all testing, it is still possible that
a small bias towards the RASP potential could exist. Unfortunately,
the current spectrum of known RNA structures is limited and
any new development of tools for RNA structure prediction and
assessment based on the existing experimental data would also
suffer from such biases. Therefore, we would like to state that the
performance comparison of RASP with ROSETTA and NAST in
the randstr dataset should be considered with caution. Nevertheless,
we trust that the particularities of RASP make it a complementary
method to be used in combination with ROSETTA and NAST for
the assessment of RNA structures. Moreover, we expect that the
development of new assessment tools will contribute to a further
development of the field.

As for protein structure prediction, RNA structure prediction
faces two main challenges: (i) the ability of generating near-
native conformations (sampling); and (ii) the ability of selecting
the conformation closest to the native structure (scoring). Recent
work carried out with the ROSETTA force field has demonstrated
that good sampling of native like conformations can be achieved for
a large number of cases (Das and Baker, 2007; Das et al., 2010).
However, there were a limited number of cases where accurate
predictions were not possible because the scoring function failed
to detect near-native conformations that were indeed generated or
sampled (Das et al., 2010). Here we have shown that RASP was
able to select more accurate models than FARFAR force field in a
dataset generated by ROSETTA (Fig. 3; Supplementary Table S7).
Therefore, it is clear that RASP constitutes a useful tool, which is
complementary to existing tools, for the assessment and prediction
of RNA structures.

In summary, in this work we have focused in developing a new
knowledge-based potential for addressing the scoring challenge.
Despite its current limitations, RASP can prove useful not only to
developers of RNA prediction methods but also to end-users who
drive their research upon RNA-predicted 3D models.
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