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Predicting the functional impact of protein variation is one of the most challenging problems in bioinformatics.
A rapidly growing number of genome-scale studies provide large amounts of experimental data, allowing the
application of rigorous statistical approaches for predicting whether a given single point mutation has an impact
on human health. Up until now, existing methods have limited their source data to either protein or gene
information. Novel in this work, we take advantage of both and focus on protein evolutionary information by
using estimated selective pressures at the codon level. Here we introduce a new method (SeqProfCod) to predict
the likelihood that a given protein variant is associated with human disease or not. Our method relies on a
support vector machine (SVM) classifier trained using three sources of information: protein sequence, multiple
protein sequence alignments, and the estimation of selective pressure at the codon level. SeqProfCod has been
benchmarked with a large dataset of 8,987 single point mutations from 1,434 human proteins from
SWISS-PROT. It achieves 82% overall accuracy and a correlation coefficient of 0.59, indicating that the
estimation of the selective pressure helps in predicting the functional impact of single-point mutations.
Moreover, this study demonstrates the synergic effect of combining two sources of information for predicting
the functional effects of protein variants: protein sequence/profile-based information and the evolutionary
estimation of the selective pressures at the codon level. The results of large-scale application of SeqProfCod
over all annotated point mutations in SWISS-PROT (available for download at http://sgu.bioinfo.cipf.es/
services/Omidios/; last accessed: 24 August 2007), could be used to support clinical studies. Hum Mutat
29(1), 198–204, 2008. rr 2007 Wiley-Liss, Inc.
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INTRODUCTION

Studies characterizing the relationship between protein variants
and human disease have grown rapidly over the past years, in part
due to genomic-scale sequencing efforts [Krawczak et al., 2000;
Sherry et al., 2001; Stenson et al., 2003]. For example, it is now
known that single nucleotide polymorphisms (SNPs) constitute
about the 90% of human protein sequence variability [Collins
et al., 1998]. Synonymous and nonsynonymous SNPs (nsSNPs)
may occur every �350 bp in coding regions [Cargill et al., 1999]
and about 50% of nsSNPs may be associated to pathologies of
genetic origin. Therefore, predicting which nsSNPs are responsible
for human disease is one of the major challenges in bioinformatics.

Recently, different methods have been developed for predicting
the effect of single point mutations in humans [Arbiza et al., 2006;
Bao and Cui, 2005; Bao et al., 2005; Capriotti et al., 2006; Chan
et al., 2007; Karchin et al., 2005a; Ng and Henikoff, 2003;
Ramensky et al., 2002; Santibanez Koref et al., 2003; Thomas
et al., 2003b; Yue and Moult, 2006]. In spite of the effort, however,
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the identification of disease-associated human nsSNPs remains a
difficult task and a satisfactory solution of general applicability is
yet unavailable. Routinely, two different types of information have
been used to address the problem. On the one hand, most of the
previously published works focus their attention toward informa-
tion from protein sequences and/or their homologs. For example,
the putative effect of mutations has been predicted by adopting
protein multiple sequence alignments [Capriotti et al., 2006; Ng
and Henikoff, 2003; Ramensky et al., 2002; Thomas et al., 2003b],
protein structures [Anishetty et al., 2006; Karchin et al., 2005a;
Terp et al., 2002; Yue and Moult, 2006], or both [Bao and Cui,
2005; Ramensky et al., 2002]. On the other hand, recent studies
have used codon-based information within a phylogenetic frame-
work to assess the degree of association between a point mutation
and its possible pathogenic effects [Arbiza et al., 2006; Santibanez
Koref et al., 2003]. A common evolutionary approach to
determine selective pressure acting at a molecular level involves
the estimation of the ratio of nonsynonymous and synonymous
rates of substitution per site (o5 dN/dS) [Yang, 2003]. Based on
43 genes, we have recently hypothesized that residues evolving
under markedly strong selective pressures (oo0.1) are signifi-
cantly (Po0.01) associated with human disease [Arbiza et al.,
2006].

Here we propose that: 1) the estimation of the selective pressure
can be used for large-scale functional annotation of nsSNPs; and
2) the combination of protein sequence/profile-based information
with codon-based information increases the accuracy of disease
prediction. We begin by describing the benchmarking datasets, the
protocol for building multiple sequence alignments, the methods
to estimate selective pressures, the building of SVMs, and the
accuracy measures (see Materials and Methods). We then assess
the results of our new classifiers and discuss the implications for
predicting the likeliness of a point mutation to be associated or not
with human disease (see Results and Discussion). Finally, we
outline the main conclusions of the present work.

MATERIALSANDMETHODS
Datasets

The selection of the training and testing datasets can affect the
accuracy of predicting deleterious and neutral effects of protein
variants. Our datasets were extracted from the SWISS-PROT
subset of the UniProt database [Bairoch et al., 2005], which was
recently described as the best dataset for training [Care et al.,
2007]. SWISS-PROT classifies protein variants as disease related
(i.e., with pathological effects), polymorphism (i.e., with no effect
on human health), or unclassified. For this study, two different sets
were obtained: SP-Dec05, derived from the SWISS-PROT release
48 (Dec 2005) and SP-Dec06, which included only mutations
from protein sequences deposited in SWISS-PROT from January
to November 2006 (release 51). The SP-Dec06 dataset was only
used for testing the robustness of our method. Five different filters
were then applied to each of the two datasets to: 1) remove
sequences from organisms other than Homo sapiens; 2) remove all
protein variants that were unclassified; 3) remove all variants
other than single point mutations; 4) remove all variants for which
the substitution rate could not be calculated using the Ensembl
database; and 5) remove all variants with less than 10 aligned
sequences in its multiple sequence alignment. The SP-Dec05
and SP-Dec06 datasets included a total of 8,987 and 2,008
protein variants, respectively (Table 1). The complete datasets are
available for download at http://sgu.bioinfo.cipf.es/datasets.

Protein Sequence Pro¢les

For each protein in the SP-Dec05 and SP-Dec06 datasets, a
sequence profile was built by collecting homologous sequences
from a nonredundant database at 95% sequence identity (nr95,
release September 2006) using the BLAST algorithm with an
inclusion e-value threshold of 10–9 and all other parameters set to
their default values [Altschul et al., 1990]. This nr95 database was
built from the NCBI nonredundant sequence database by running
the cd-hit algorithm with 95% sequence identity cutoff [Li and
Godzik, 2006].

Selective Pressures

Orthologous sequences in eight mammalian species for 2,466
genes were retrieved from the Ensembl-Compara database
(version v.42) of the Ensembl Database Project [Hubbard et al.,
2005]. The genomes were as follows: 1) human (Homo sapiens,
v.42_36d); 2) chimpanzee (Pan troglodytes, v.42_21a); 3) macaque
(Macaca mulatta, v.42_10b); 4) mouse (Mus musculus, v.42_36c);
5) rat (Ratus norvegicus, v.42_34 l); 6) dog (Canis familiaris,
v.42_2); 7) bull (Bos taurus, v.42_2e); and 8) opossum (Mono-
delphis domestica, v.42_3b). If multiple orthologous relationships
were annotated in the database, the relationship showing
the shortest distance with the Ensembl tree was selected. In
this work, the phylogenetic relationships between the eight
species were established according the following topology:
(((((1,2),3),(4,5)),(6,7)),8) [Springer et al., 2004].

Translated protein sequences based on the largest transcript of
each gene in the different species were aligned using Muscle v3.6
with a maximum of 10,000 iterations or 5 hr running time and all
other parameters set to default values [Edgar, 2004]. Gapped
positions in the resulting multiple protein sequence alignments
were removed before mapping back to the DNA sequence and
estimating the selective pressure both for each lineage and at each
position through different approaches. Estimates of selective
pressure (o) for each lineage were obtained using a free branch
model and the F3x4 codon frequency option as implemented in
the he codeml program of the PAML (version 3.14a) package
[Yang, 1997]. Both the nonsynonymous rate of substitution per
nonsynonymous site (dN) and the synonymous rate of substitution
per synonymous site (dS) used in the estimation of lineage-wise
selective pressure (o5 dN/dS) were taken into account. Two
different likelihood site-models (M2a and M8) from codeml were
additionally used to estimate the selective pressure (o) at given
codon sites. All parameters for the site models were set to their
default values except for the ‘‘runmode’’ and ‘‘model’’ parameters
that were set to zero, the codon frequency model was set to F3x4,
and the ‘‘Nssites’’ parameter was set to 2 and 8 for the M2a and
M8 models, respectively. Empirical Bayes analysis [Nielsen et al.,
1998; Yang et al., 2005] was used to calculate the posterior
probability of each site belonging to each class in the models M2a
and M8. The analysis gave us the posterior o values, which
represent the strength of natural selection acting on each site.
These posterior o values denoting purifying selection, positive
selection, or neutral evolution on sites, were the values used for all
proteins evaluated under the codon-based likelihood site models

TABLE 1. nsSNPDatasets Used inThisWork

Protein variants Disease Polymorphism Sequences

SP-Dec05 8,987 6,220 2,767 1,434
SP-Dec06 2,008 804 1,204 720
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M2a and M8 (i.e., oM2 and oM8, respectively). For each protein
in the SP-Dec05 and SP-Dec06 datasets, the model with the best
likelihood was selected. Finally, the Kolmogorov Smirnov (K-S)
test, implemented in the R-statistical package [Ihaka and Gentel-
man, 1996], was used to evaluate the statistical significance of the
difference between o value distributions associated to disease and
polymorphism.

SupportVector Machine Classi¢ers

Support vector machines (SVMs) are universal classifiers that
learn a variety of data distributions from training samples, and as
such, are applicable to classification and regression tasks [Vapnik,
1995]. SVMs have previously been used for predicting the
phenotypic effect of a point mutation in a protein [Bao and Cui,
2005; Bao et al., 2005; Capriotti et al., 2005a; Chan et al., 2007;
Karchin et al., 2005a, 2005b; Yue and Moult, 2006]. Here we rely
on our previous work [Capriotti et al., 2006, 2005a, 2005b] to
extend the implementation of sequence-based and profile-based
SVMs to include codon-based estimation of selective pressures at
each position of the target sequences. Our SVMs were trained
with a radial basis function standard kernel implemented in the
LIBSVM package [Chang and Lin, 2001]. The grid program from
the same package was used to search for the optimal ‘‘C’’ and ‘‘G’’
parameters (i.e., here set to 0.5 and 3.05 � 10–5, respectively). In
this work, we have developed four types of SVMs depending on
the input information: 1) sequence-based SVMs that encode for
protein sequence information (Seq); 2) sequence- and profile-
based SVMs that encode for sequence and profile information
(SeqProf); 3) sequence- and codon-based SVMs that encode both
for protein sequence and selective pressure (SeqCod); and 4)
combined SVMs that use all the information available considering
the protein sequence, the sequence profile and selective pressure
at the codon level (SeqProfCod).

First, the Seq SVM was trained using only sequence information
encoded in a vector of 40 elements or features [Capriotti et al.,
2006, 2005a]. The first 20 elements encode for the change in
amino acid type at the mutation site and the second 20 elements
encode for the frequency of amino acid types in a window of 18
residues around this position.

Second, SeqProf was trained by adding the information derived
from a multiple sequence alignment of the target sequence and its
close homologous sequences to the Seq classifier. Two new features
were added to the previous 40-element vector: the ratio of the
mutated residue vs. the wild-type residue in the sequence profile
and the number of aligned sequences in the mutated position
encoded for the profile information.

Third, the SeqCod SVM was trained using sequence- and
codon-based information encoded in a vector of 43 elements of
which the sequence information is encoded in the first 40
elements and codon-based information is encoded in the last three
elements corresponding to the codon-based o and lineage-based
estimates of dN and dS.

Fourth, SeqProfCod combined protein sequence and profile
information with selective pressures in a 45 features vector (i.e., 40
features describing the sequence-based information, two features
describing the profile-based information, and three features
describing the codon-based information).

Protein Pro¢le-Based Methods

Two widely used methods based on protein profile information
were also tested against the combined SeqProfCod classifier. First,
the SIFT program [Ng and Henikoff, 2002], which is based on the

premise that important amino acids are conserved within a protein
family, was downloaded from http://blocks.fhcrc.org/sift/SIFT.html
[Ng and Henikoff, 2003] and run locally with all its parameters set
to their default values. Second, the PANTHER program [Thomas
et al., 2003a], which uses a profile-based Hidden Markov Model to
rank polymorphisms according to their likelihood of affecting
protein function, was downloaded from www.pantherdb.org and
run locally against the PANTHER_6.1 library with all its
parameters set to their default values.

Accuracy Measures

The resulting classifiers were tested for their accuracy for
predicting the phenotypic effects of point mutations using a cross-
validation procedure over the SP-Dec05 dataset. Their accuracy
was calculated by a 20-fold cross-validation procedure, which
randomly replicated neutral polymorphisms mutation data to
balance its proportion to disease-related mutations in the training
sets. Furthermore, to prevent overtraining and overestimating of
the results due to the redundancy of sequences, all the proteins in
the datasets were clustered according to their sequence similarity
using the blastclust program with its parameters set to their default
values [Altschul et al., 1997]. No two proteins from the same
cluster were allowed to be part of the same training and testing
datasets.

The overall accuracy (Q2) of a binary classifier is calculated as:

Q2 ¼
TPþ TN

N
ð1Þ

where TP an TN are the true positive and negative predicted
mutations and N is the total number of mutations. The correlation
coefficient C is:

C ¼
ðTP� TNÞ � ðFP� FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTPþ FPÞ � ðTNþ FPÞ � ðTNþ FN

p
Þ
ð2Þ

where FP and FN are the false positive and negative predicted
mutations.

The accuracy Q(s) for each class s and its complementary (i.e.,
disease and polymorphism) is:

QðsÞ ¼
TðsÞ

TðsÞ þ Fð�sÞ
ð3Þ

A reliability score (RI(s)) to each prediction is:

RIðsÞ ¼ 10� absðOðsÞ � tÞ � wðsÞ ð4Þ

where O(s) is the probability assigned by the classifier to the class
s, t is a threshold, and w(s) is the weight of the set relative to the
class s. In this work, t and w(s) were set to 0.5.

Other standard scoring measures [Baldi et al., 2000], including
the area under the ROC curve (AUC) and the true-positive rate
(TPR) and false-positive rate (FPR) are also used to assess the
accuracy of the benchmarked methods. TPR and FPR are:

TPR ¼
TP

TPþ FN
FPR ¼

FP

FPþ TN
ð5Þ

RESULTSANDDISCUSSION
Selective Pressures, HumanDisease,
and Polymorphism

Natural selection works in proportion to the number of
deleterious mutations occurring in the population [Kimura,
1983]. On the one hand, mutations on functionally relevant
residues are expected to show high selective constraints. On the
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other hand, residues that are not associated with major functional
roles of the protein may be changing under neutral evolution and
consequently not necessarily found in association with disease.
Accordingly, we hypothesized that nsSNPs from coding regions of
the genome that affect human health may evolve more frequently
under strong selective pressure (i.e., or0.1) [Arbiza et al., 2006].
Using a large-scale testing set, we have found a statistically
significant association in humans between high selective pressures
and disease, in contrast to low selective pressures and neutral
polymorphic variants (Fig. 1). Disease-related protein variants and
polymorphisms show significantly different distributions. The
median o values for disease-related and neutral polymorphisms
variants are 0.068 and 0.14, respectively. Therefore, the disease-
related median value is 0.072 lower than that for polymorphisms.
This difference, although small, is very significant given a much
larger distribution for o values of polymorphisms (P-value of
2.2 � 10–16). This result indicates that o values smaller than 0.1
are more frequently associated to disease than to polymorphisms.

Protein Sequence and Pro¢le-Based Classi¢ers

The Seq classifier, which solely includes information about the
target sequence, results in an average overall accuracy (Q2) of
0.73, correctly predicting 72% of the disease associated mutations
and 74% of the polymorphisms in the SP-Dec05 dataset (Table 2).
The correlation coefficient (C) is 0.43 and the area under the
curve (AUC) is 0.81 (Table 2). This classifier can be considered
the base line reference to assess the increment in accuracy as
evolutionary information is added during training. The accuracy of

SeqProf for predicting disease-related mutations compared to the
Seq classifier increases from 72% to 80% with a final correlation of
0.52. This increment is also reflected in a larger AUC of 0.85 and
the percentage of true-positive rate (TPR), which increases 7%
points with respect Seq at the false-positive rate (FPR) of 5%
(Fig. 2). The SeqProf method results in a higher accuracy than
using the ratio of mutated residue alone calculated from the
sequence profile. This shows that the introduction of sequence
information with profile-based information improves the quality of
the predictions (Fig. 2A). Thus, the results presented here are in

FIGURE 1. x distribution for disease and polymorphism protein
variants in the SP-Dec05 dataset.The box-plot shows the upper
and lower quartiles (box), the interquartile range (dashed verti-
cal lines), and the median (horizontal bold line) values for
disease-related and polymorphism protein variants (0.068 and
0.14, respectively). For visual inspection, a dashed horizontal
line in gray indicates x value of 0.1.

TABLE 2. Accuracy of the Classi¢ersOver the SP-Dec05 Dataset

Q2 Q (disease) Q (neutral) C AUC

Seq 0.73 0.72 0.74 0.43 0.81
SeqProf 0.78 0.80 0.74 0.52 0.85
SeqCod 0.79 0.82 0.74 0.53 0.86
SeqProfCod 0.82 0.84 0.77 0.59 0.88

FIGURE 2. Receiver operating characteristic (ROC) curves. The
area under the ROC curve represents the probability of correct
classi¢cationover thewhole rangeof cuto¡s.This area is usually
taken to be an important index because it provides a singlemea-
sure of overall accuracy that is not dependent upon a particular
feature threshold. A: Comparison of individual input scores x
and ratio of mutated residue against SVM trained SeqCod and
SeqProf. B: Comparison of our four SVM-based methods Seq,
SeqCod, SeqProf, and SeqProfCod.
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agreement with our previous work that indicated the role of
sequence environment and sequence profile in improving disease
classification using SVM-based methods [Capriotti et al., 2006,
2005a].

Codon-Based SVMs

The SeqCod classifier, which takes into account the o value for
the mutated position and dN and dS for branches calculated with
the PAML model, results in a Q2 of 0.79 (6% increase in accuracy
with respect to Seq) and a AUC of 0.86. SeqCod correctly predicts
82% and 74% of the disease-related and polymorphism protein
variants, respectively (Table 2). SeqCod predictions are also more
accurate than simply using the o measures with no combination
with sequence and no training by the SVM (Fig. 2A). Including
both protein-based and codon-based information further increases
the accuracy of the classifier by several percentile points. For
example, SeqProfCod results in a Q2 of 0.82, correctly predicting
�4% more protein variants than either SeqCod or SeqProf and
�10% more protein variants than Seq alone (Table 2). SeqProf-
Cod results in an AUC of 0.88, the largest of the tested classifiers.
In particular, SeqProfCod increases by �12% points the value of
TPR at 5% of FPR with respect to the sequence-based classifier
(Fig. 2B). The overall accuracy and the correlation coefficient of
the SeqProfCod classifier increase with the reliability index (RI)
(Fig. 3). The RI, calculated for each prediction, is indicative of the
accuracy of each of the predictions by SeqProfCod. At an RI of 3,
SeqProfCod is able to predict an effect of a protein variant for the
89% of the dataset with a correlation coefficient of 0.69 (Fig. 3).
Moreover, SeqProfCod reaches similar accuracy using the SP-
Dec06 testing dataset showing a robust level of reliability
predicting disease-related mutations (77%) even when this dataset
is unbalanced toward neutral polymorphisms (Table 1).

Testing SeqProfCod Against SIFTand PANTHER

The results so far show that the accuracy of our classifiers
increases with the inclusion of more detailed information about
the evolution of the target sequences. These differences are clear
when comparing Seq, which includes solely the sequence-based
information, with SeqProfCod, which includes evolutionary
information from protein- and codon-based multiple alignments.
Compared to the SIFT and PANTHER programs, SeqProfCod
results in similar or higher accuracies for both datasets (Tables 3
and 4). SIFT results in a Q2 of 0.71 over the SP-Dec05 and SP-
Dec06 datasets. The accuracy of PANTHER is between 3% and
6% points higher than that of SIFT for both testing datasets (i.e.,
Q2 of 0.74 and 0.77, respectively). However, both methods, SIFT
and PANTHER were unable to predict the effect of all protein
variants in the testing sets. When a protein variant could not be
aligned to either a block or a Hidden Markov Model, SIFT and
PANTHER were unable to predict the likely outcome of the point
mutations (i.e., 3% and 17% of the SP-Dec05 dataset and 4% and
23% of the SP-Dec06 dataset, respectively). SeqProfCod results in
a higher accuracy than SIFT of �11% in Q2 and 0.21 in C.
Compared to PANTHER the increase in accuracy is smaller
resulting in 8% higher Q2 and in 0.16 higher C (Table 3).
However, the coverage of PANTHER is 18% and 23% smaller
than that of SeqProfCod for the SP-Dec05 and SP-Dec06 datasets,
respectively. Filtering our predictions and considering only those
with RI larger than or equal to 3, SeqProfCod results in a Q2 equal
to 80% and C of 0.59 over 78% of the mutations included in the
SP-Dec06. Thus, at a similar coverage, our method results in
higher accuracy than PANTHER.

Advantage of Combining x and Sequence Pro¢les

SeqProfCod uses two main sources of information to predict the
most probable outcome of a point mutation (i.e., multiple
sequence alignment and estimation of evolutionary strength at
the codon level). To discern the contribution of each of the factors
as well as their synergy, we have studied the error rate (i.e., false
predictions) at optimal cutoffs for both o and the ratio of mutated
residue. Minimum error rates are reached at o of 0.12 and ratio of
mutated residue of 0.07 for the SP-Dic05 dataset, which was then
accordingly divided into four different subsets considering those
two cutoffs (Table 5). On average, SeqProfCod results in more
accurate predictions (�4% higher average accuracy with respect to
SeqCod and SeqProf) when both o and the ratio of mutated

FIGURE 3. Overall accuracy (Q2) and correlation (C) of SeqProf-
Cod as a function of the reliability index (RI). Cov is the fraction
of the SP-Dec05 dataset with RI values higher or equal to the
given cuto¡.The horizontal dashed line crosses the plot at the
RI cuto¡ of 3, corresponding toQ2 of 0.87, C of 0.69, andCov of
82%.

TABLE 3. Accuracy of SeqProfCodCompared to SIFTandPANTHEROver
the SP-Dec05 Dataset

Q2 Q (disease) Q (neutral) C Cov (%)

SeqProfCod 0.82 0.84 0.77 0.59 100
SIFT 0.71 0.72 0.69 0.38 97
PANTHER 0.74 0.75 0.72 0.43 83

TABLE 4. Accuracy of SeqProfCodCompared to SIFTandPANTHEROver
the SP-Dec06 Dataset

Q2 Q (disease) Q (neutral) C Cov (%)

SeqProfCod 0.74 0.78 0.72 0.48 100
SIFT 0.71 0.70 0.72 0.42 96
PANTHER 0.77 0.71 0.81 0.52 77
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residue are below their respective cutoffs. SeqProfCod also results
in better accuracy for �30% of nsSNPs in the SP-Dic05 dataset
that result in o and ratio of mutated residue with different
tendency (i.e., o 40.12 and ratio of mutated residuer0.07 or
or0.12 and mutation ratio 40.07). Therefore, the results
indicate that the SeqProfCod is able to discern between the two
features by selecting the most informative. For example, for o
40.12 and ratio of mutated residue r0.07, SeqProfCod results in
average accuracy closer to SeqProf than SeqCod. Similarly, with
or0.12 and ratio of mutated residue 40.07, SeqProfCod results
in an average accuracy closer to SeqCod than SeqProf. Thus,
SeqProfCod generally predicts disease or polymorphism if both
cutoffs are below or above the optimal thresholds, respectively.
Accordingly, SeqCod and SeqProf accuracies decrease when a
disagreement between the two parameters occurs (Table 5). These
results, as well as the two examples outlined next, show that
SeqProfCod is able to capture the synergic effect of combining o
and sequence profiles.

Tumor Suppressor p53 and Iduronate 2-Sulfatase
Precursor Genes

The p53 gene product (P53_HUMAN) acts as a tumor
suppressor by inducing growth arrest or apoptosis, depending on
the physiological circumstances and cell type of the tumor. Several
mutations in the gene have been already associated with cancer. In
particular, mutations P278A, P278 T, R280 K, and R283 H are
associated with higher risk of colon cancer [De Vries et al., 1996].
The o calculated for the sequence positions 278, 280, and 283 was
0.13, 0.11, and 0.11, respectively. Such o values are near or above
the optimal cutoff thus yielding to polymorphism prediction when
using SeqCod. However, those positions were completely con-
served in the multiple sequence alignment, resulting in mutated
residue ratios equal to zero, which made it possible to correctly
predict those mutations as diseases associated by SeqProfCod. On
average, SeqProfCod correctly predicts 81% of all 52 p53
mutations annotated in SWISS-PROT.

The Iduronate 2-sulfatase precursor gene (IDS_HUMAN)
is responsible for the lysosomal degradation of proteoglycans.
Two particular mutations in the IDS gene (S143F and P160R)
have been associated with Hunter syndrome [Hopwood et al.,
1993; Karsten et al., 1998]. The mutated residue ratio for
S143F and P160R are 0.05 and 0.06, respectively, which are
near the optimal cutoff and make it difficult to correctly
predict them using only profile-based information (i.e., by
SeqProf). However, the o value for positions 143 and 160 was
0.08. Thus, using SeqProfCod correctly predicted the association
of those two mutations with disease. The overall accuracy of
SeqProfCod for all 106 IDS mutations annotated in SWISS-PROT
was 92%.

Application to the CDKN2A, MLH1, MSH2, MECP2,
andTYRGenes

In a recent article, Chan et al. [2007] compared four different
computational methods for predicting the likely outcome of a
point mutation in a limited number of human genes associated
with inherited disorders (i.e., CDKN2A, a tumor suppressor;
MSH2 and MLH1, responsible for the hereditary cancer
syndrome; and MECP2 and TYR). The authors concluded that
the tested methods were able to correctly predict the mutation
effects for 73 to 82% of the 254 mutations dataset from the five
genes. An interesting result from their work is that using a
consensus approach and selecting only predictions in which most
of the methods agreed, resulted in a significant increase of
accuracy at the cost of decrease in coverage [Chan et al., 2007].
SeqProfCod could be applied to 47.6% of the 254 point mutations,
resulting in an accuracy of 86.8%, which is comparable with the
accuracy by the consensus approach proposed by Chan et al.
[2007].

CONCLUSIONS

With this work we show that the estimation of selective
pressures can be used for large-scale functional annotation of
nsSNPs and that the combination of protein sequence/profile-
based information with codon-based information increases the
accuracy of disease prediction. Our initial hypothesis that codons
with estimated o values smaller than 0.1 were more strongly
associated with disease mutations in human has been corroborated
by the present analysis. Moreover, the combination of codon-based
information with protein sequence- and profile-based information
has yielded a new SVM classifier that results in higher accuracy
than other tested methods. SeqProfCod may prove useful for
annotating the effects of point mutations in genomic-scale
predictions and could have an added value for clinical counseling
in assessing the likely outcome of a SNP in a patient [Chan et al.,
2007]. Moreover, SeqProfCod predictions are automatically
associated with a reliability index, which makes them more useful
for clinical decision-making. Although the absolute gains in terms
of Q2 appear to be small, the benefits could telescope in a large-
scale application such as predicting the effects of the �57,000
nsSNPs annotated in dbSNP [Sherry et al., 2001]. By using
SeqProfCod, we could expect to correctly predict the likely effect
of a mutation for �2,000 more nsSNPs than without using the
codon-based information. An initial application at a genomic scale
of our new classifier provides us a priori assessment of the
phenotypic effect of nsSNPs in the human genome.
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TABLE 5. Performances of SeqCod, SeqProf, and SeqProfCod onDi¡erent
Subsets of SP-Dec05

SeqCod SeqProf SeqProfCod

x
Ratiomutated

residue Dataset% Q2 C Q2 C Q2 C

r0.12 r0.07 56 0.84 0.30 0.84 0.30 0.88 0.32
40.12 40.07 14 0.81 0.34 0.80 0.32 0.81 0.31
r0.12 40.07 17 0.70 0.39 0.63 0.36 0.68 0.40
40.12 r0.07 13 0.68 0.41 0.73 0.43 0.74 0.49
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