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ABSTRACT

Motivation: Aligning RNAs is useful to search for homologous genes,

study evolutionary relationships, detect conserved regions and identify

any patterns that may be of biological relevance. Poor levels of con-

servation among homologs, however, make it difficult to compare

RNA sequences, even when considering closely evolutionary related

sequences.

Results: We describe SARA-Coffee, a tertiary structure-based mul-

tiple RNA aligner, which has been validated using BRAliDARTS, a new

benchmark framework designed for evaluating tertiary structure–

based multiple RNA aligners. We provide two methods to measure

the capacity of alignments to match corresponding secondary and

tertiary structure features. On this benchmark, SARA-Coffee outper-

forms both regular aligners and those using secondary structure infor-

mation. Furthermore, we show that on sequences in which560% of

the nucleotides form base pairs, primary sequence methods usually

perform better than secondary-structure aware aligners.

Availability and implementation: The package and the datasets are

available from http://www.tcoffee.org/Projects/saracoffee and http://

structure.biofold.org/sara/.
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1 INTRODUCTION

Recent reports of a large number of previously unknown RNA

genes (Guttman et al., 2009) have prompted a renewed interest in

the field of non-coding RNA analysis. This shows well in the

growing number of scientific reports uncovering a rapidly

expanding range of new functions, and it now appears that

non-coding RNAs are involved in most parts of the cell machin-

ery, including X inactivation [Xists (Brown et al., 1992)], genome

integrity maintenance [piwi-interacting RNA (Farazi et al.,

2008)], transcript knockdown and cell differentiation [miRNA

(Lee et al., 1993)] as well as nuclear trafficking [NRON

(Willingham et al., 2005)], among others. From a functional

standpoint, the main consequence of high-throughput sequen-

cing has certainly been the discovery of a large number of long

non-coding RNAs (lncRNAs), simultaneously identified as

un-reported non-coding ENCODE transcripts (Orom et al.,

2010) and as conserved genomic regions with active promoter

chromatin signatures (Guttman et al., 2009). The exact function

of this new class remains a matter of debate, although mounting

bodies of evidence suggest their involvement in gene regulation,

either through trans- (Rinn et al., 2007) or cis-acting (Orom

et al., 2010) mechanisms. Other reports are also suggesting the

potential usage of lncRNAs as biomarkers (Romanuik et al.,

2009). In humans only, the latest ENCODE catalog lists

417 000 lncRNA genes, and probably more have to come as a

wider range of tissues get deep-sequenced. It remains a matter of

debate whether these lncRNAs have evolutionary conserved sec-

ondary structure. A difficulty when looking for such structures is

the fast evolutionary pace of these molecules, a property that

makes it hard to produce structurally informative sequence

alignments.
This limitation is rather serious, as our capacity to make sense

of so much new information will significantly depend on our

ability to build accurate homology-based models (Capriotti

and Marti-Renom, 2008a). In the present work, we borrow

some concepts developed for protein sequence comparison and

show that RNA structural information can be used to derive

more informative multiple sequence alignment (MSA) models.

This approach amounts to defining a perfect RNA alignment

as the one maximizing the matching of structurally equivalent

elements. Such accurate alignments are critical for various mod-

eling applications, including evolutionary reconstruction, data-

base search using improved context-free stochastic grammar

model and fine-grain structural modeling of novel family mem-

bers. We show that even a small amount of three-dimensional

(3D) or two-dimensional (2D) experimental structure can help

improve these models.

Alignment methods rely on the notion that key features are

usually preserved by evolution through purifying selection.

Multiple comparison models can therefore reveal functional
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elements that would otherwise be difficult to identify on a single
sequence. This is especially true for structured RNA molecules
where compensated mutations are frequent signatures for evolu-

tionarily maintained stem loops. This strategy has been
extensively used for the successful elucidation of ribosomal
RNA secondary structures (Gutell and Fox, 1988).

Unfortunately, producing alignments accurate enough to be
used for secondary-structure prediction is a challenging task, es-
pecially when dealing with distantly related sequences. Two main

obstacles exist that prevent the computation of informative hom-
ology-based models. First of all, RNA sequences are composed
of a four-letter alphabet, with no higher-order meta-alphabet

(like proteins’ amino acid code) that would help powering stat-
istical analysis. As a consequence, structure similarity becomes
hard to infer when sequences have 560% identity (Abraham

et al., 2008; Capriotti and Marti-Renom, 2010). Second, for
many RNAs, sequence evolution is mostly constrained by the
maintenance of secondary structure elements stabilized through
a combination of canonical and non-canonical base-pairings.

Under such constraints, it has been shown that sequences can
evolve rapidly while exploring so-called neutral networks
(Huynen et al., 1996). The combination of a small alphabet

with rapid evolution makes it difficult to use standard alignment
tools like Basic Local Alignment Search Tool-based approaches
(Altschul et al., 1990). To address these limitations, one can tap

into the evolutionary signal contained in di-nucleotides that re-
sults from the co-evolution of adjacent bases. This approach has
been recently shown to be effective enough for the improvement

of database search accuracy (Bussotti et al., 2011).
Unfortunately, the signal thus uncovered is modest and unlikely
to result in significantly improved alignments. A more suitable

solution involves the simultaneous estimation of sequence and
structural conservation using Sankoff algorithm (Sankoff, 1985).
As effective as it may be in theory, this approach is hampered by

prohibitive memory and CPU requirements, a limitation that has
prompted the development of a large number of faster approxi-
mate heuristics for the inclusion of secondary structure informa-

tion when aligning RNA. Some of the most popular tools include
R-Coffee (Wilm et al., 2008), LocARNA (Will et al., 2007) and
Consan (Dowell and Eddy, 2006). Consan combines expectation

maximization with a sophisticated banded dynamic program-
ming strategy, which results in a heuristic approximation of
Sankoff algorithm. The Consan algorithm that only aligns two

sequences at a time can easily be combined with a consistency-
based multiple sequence aligner like T-Coffee (Notredame et al.,
2000) or R-Coffee (Wilm et al., 2008) to assemble highly accurate

RNA MSAs.
Consistency-based aligners (Do et al., 2005; Notredame et al.,

2000; Roshan and Livesay, 2006; Wilm et al., 2008) rely on the

compilation of an exhaustive library of all-against-all pairwise
alignments. This library is extended to derive a position-specific
scoring scheme, used to compute a standard progressive align-

ment. The main strength of multiple aligners like T-Coffee is to
allow any third-party pairwise aligner to be used for the library
generation. This property was previously used to generate struc-

ture-based protein alignments (O’Sullivan et al., 2004) by com-
bining structural pairwise aligners like SAP (Taylor and Orengo,
1989). We show here how this approach, originally developed for

proteins, can easily be extended to RNA sequence alignments,

provided suitable pairwise tools are used to build the pairwise
library. Structure-based RNA alignment algorithms include
SARA (Capriotti and Marti-Renom, 2008b, 2009), DIAL

(Ferre et al., 2007), ARTS (Dror et al., 2005), LaJolla (Bauer
et al., 2009), R3D Align (Rahrig et al., 2010) and SARSA
(Chang et al., 2008). These tools belong to a recently described

class of aligners that make use of experimentally derived 3D
structures. In this study, we chose the SARA structural aligner
that estimates series of unit vectors between consecutive C30

atoms (shown by the authors to be the most suitable for this
task) and aligns them using dynamic programming, to minimize
the root mean square deviation between superimposed atoms. As

a stand-alone pairwise structural aligner, SARA is directly usable
within the T-Coffee framework, and we describe in this article, a
framework suitable for validating the effectiveness of combining

these two tools for the generation of 3D structure-based RNA
MSAs.
The benchmarking of an RNA 3D structure-based method

like SARA-Coffee is not an easy task. First of all, one needs

reference datasets of sequences with known 3D structures.
When it comes to benchmarking RNA alignments, BRAliBase
(Gardner et al., 2005) is usually referred to as the reference

collection of choice. However, it cannot be used in the context
of this work, as57.2% of the sequences that make up the data-
sets match a known 3D structure (�95% identity), thus making

it an impractical reference dataset for the benchmark of tertiary-
structure aligners. This limitation prompted us to assemble
BRAliDARTS, a new reference dataset that only contains

DARTS clusters (Abraham et al., 2008) of structurally hom-
ologous sequences, further filtered for their suitability
(see Section 2). The second issue relates to the nature of the

reference. Our goal being the evaluation of a structural aligner,
any reliance on a structure-based reference alignment would have
turned our approach into the de-facto comparison of two alter-

native structural alignment strategies (ours and the one used for
the reference). We therefore decided to do an alignment-free as-
sessment of our method by evaluating SARA-Coffee’s ability to

match structurally equivalent features such as pairs of paired
residues, or internal structural distances. This comparison of in-
ternal structures was carried out by adapting the NiRMSD

(Armougom et al., 2006), a method designed to estimate
the structural accuracy of protein MSAs (see Section 2), to
use distances between the C30 atoms of the aligned RNA

sequences.
SARA-Coffee is heavily dependent on available RNA 3D

structure, an information source only available in small quanti-

ties. For instance, the latest PDB release (November 2012) con-
tains54100 chains longer than eight nucleotides (a minimum for
the SARA algorithm), with a mere 2325 mapping onto the 6

million or so sequences in Rfam. This shortage severely restricts
the scope of a method like SARA-Coffee, and we therefore
decided to broaden the scope of this work by going beyond a

mere pure structure-based validation. We also tried to estimate
the usefulness of 3D structural information when computing
MSAs so as to provide the community with guidelines on how

these data may be used as efficiently as possible, and also to
determine when these data are critically needed. We were espe-
cially interested in determining the usefulness of 3D data when

doing 2D modeling. This question is relevant in a context where
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it may soon be relatively easy to use next-generation sequencing

to do massive secondary structure estimation at minimal cost

(Kertesz et al., 2010; Wan et al., 2012), even though the reliability

of such techniques remains to be established.

2 METHODS

2.1 Benchmarking dataset

Our benchmark is a collection of 41 datasets, each made of several

unaligned homologous structures. These datasets were compiled from

the DARTS database (Abraham et al., 2008). DARTS stores 1333

RNA structures that can be clustered in 94 structurally homogenous

subgroups using ARTS (Dror et al., 2005). Not all DARTS sequences

are suitable for the approach described here, and some filtering was

needed to define a usable subset. The initial dataset was filtered by: (i)

removing all sequences tagged as fragments by DARTS, (ii) converting all

non-canonical residue symbols into an N, (iii) updating outdated PDB

structures with their newer versions, (iv) removing RNA–DNA hybrids

and structures including heteroatoms, (v) removing structures containing

less than nine nucleotides, (vi) removing clusters in which X3DNA

(Lu and Olson, 2003) failed to extracting at least one secondary structure,

(vii) removing structures with discrepancies between the ATOM and the

SEQRES PDB fields and (viii) removing clusters with less than three

sequences. The final dataset resulted in a total of 41 distinct sequence

sets containing 486 structures (see Supplementary Materials). The most

common RNA types in this BRAliDARTS are rRNA and tRNA, a more

detailed description is shown in Supplementary Table S2. We named this

dataset collection BRAliDARTS, by reference to BRAliBase (Gardner

et al., 2005), a popular reference dataset used for RNA aligner bench-

marks. BRAliDARTS can be downloaded from http://www.tcoffee.org/

Projects/saracoffee. We used these same data to define a high-quality

subset named BRAliDARTS-HQ. We did so by (i) removing all

non X-ray structures, (ii) keeping only structures with a resolution

lower than 2.85 Å and (iii) removing all structures in which RNA se-

quences have a fraction of base-pair residues lower than 48%. This

high-quality dataset resulted in a set of 10 clusters with a total of 79

sequences.

2.2 Benchmark

In BRAliDARTS, reference datasets do not come along with reference

alignments, and are merely defined as sets of homologous sequences each

with an associated 3D structure. It is important to stress that the bench-

mark strategy described here relies on all the considered sequences having

an experimentally known 3D structure. We used two MSA method-in-

dependent metrics. The first one is adapted from the NiRMSD

(Armougom et al., 2006), a measure originally defined to evaluate protein

MSAs by comparing the variation in intra-molecular distances

(as inferred from the evaluated MSA itself and the 3D structure of the

considered sequences). The NiRMSD can be described as a normalized

form of the distance RMSD. In this work, the original package was

adapted to evaluate intra-molecular distances using the RNA ribose

C30 instead of the peptidic alpha carbons. We choose the C30 atom

having this most conserved inter-distance of all RNA backbone atoms

(Capriotti and Marti-Renom, 2008b) The principle of a distance RMSD

is to compare variations of distances between pairs of aligned residues. Its

main advantage over a standard RMSD is its non-reliance on a structural

superposition. The alignment columns declare equivalent residues, and

intra-molecular distances are directly estimated within the non-

superposed 3D structures.

The second metric is named Secondary Structure Sum of Pairs (3SP).

3SP is a simple measure estimating the number of base pairs where each

side of the pair is aligned with equally contacting residues. We used the

m3 implementation of this measure originally described in Notredame

et al. (1997), and formalized as follows:

3SP ¼

P

i, j

Pi, j

P

i, j

minðpi, pjÞ

where Pi,j is the number of residue pairs found to be in agreement when

considering the pairwise alignment of sequences i and j. Residue pairs

were estimated from the original PDB structures using the X3DNA.

Figure 1 displays a schematic overview of these metrics and shows how

when using a Newick-like representation of RNA secondary structures,

the 3SP metrics amount to estimating the number of matching parenthe-

sis aligned with equally matching parenthesis, and normalizing this value

by its theoretical maximum. Figure 2 shows an example of two colored

alignments using this metric.

2.3 SARA-Coffee

Our new method is called SARA-Coffee and is based on R-Coffee.

R-Coffee is a consistency aligner for RNA. It can be described as a

modified version of T-Coffee able to incorporate predicted secondary

structure [RNAPlfold (Bernhart et al., 2006)]. The main advantage of

consistency-based aligners is their capacity to better integrate sequence

and structural information across large datasets. They may be described

as improved progressive alignment heuristics and have been shown to

outperform simpler algorithms on many occasions. The default

T-Coffee algorithm operates as follows: given a collection of sequences

to align, it starts making all the pairwise comparisons and stores them in

a data structure named primary library. This primary library can be

described as collection of all aligned residue pairs collected from the pri-

mary alignments. The library is then processed by combining all possible

residue pairs containing one common residue (as defined by indexes and

sequences) into residue triplets. The library of triplets is named an ex-

tended library. To create a multiple alignment, the sequences are then

clustered into a guide tree and incorporated one-by-one into the final

MSA while following the guide tree order. At that stage, and in contrast

to other aligners, like ClustalW, T-Coffee does not use a substitution

matrix but a scoring scheme derived from the extended library. This

scoring scheme assigns to the matching of any residue pair, a score

equal to the number of triplets (in the extended library) that link this

same pair through a third intermediate residue.

This initial T-Coffee algorithm has been modified to align RNA, by

adding to the primary library all pairs that would result from the system-

atic matching of residues predicted to do Watson and Crick (WC) base

pairs. For instance, if a residue x of sequence A forms a WC base pair

with residue y of that same sequence and is found aligned with residue w

of sequence B that forms a WC base pair with residue z of sequence B,

then the primary library will contain both the pair xw and the pair yz,

even if xz does not appear in any alignment. This approach, similar to the

Fig. 1. Schema of the 3SP score computation. The outer base pairs match

while the inner one do not thus are not considered for the 3SP

computation
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four-ways consistency described in the RNA alignment flavor of Mafft,

amounts to enriching the primary library with structural (predicted or

experimental) secondary structure information. The rest of the process is

entirely identical to T-Coffee, including the library extension.

The main strength of T-Coffee is its primary library and the possibility

it gives to populate this library with any method able to produce high-

quality pairwise alignments. In the present work, SARA-Coffee uses the

SARA RNA pairwise structural alignment method (Capriotti and

Marti-Renom, 2008b) and relies on the assumption that all considered

sequences have a known 3D structure. SARA is then used to produce all

the structure-based pairwise sequence alignment to populate the library.

The 3D structures are also used to extract the correct secondary struc-

tures (X3DNA) with which the library is further extended by projecting

the base pairs.

To determine the influence of 2D/3D structure information, we also

designed two additional T-Coffee implementations: R-CoffeeReal and

BestPairs. R-CoffeeReal is the default R-Coffee running with experimen-

tal secondary structures rather than predicted. BestPair is a mixture of

SARA-Coffee and R-Coffee that runs SARA on a single pair of

sequences only (the most closely related) and ignores true structural

information for all the other pairs of sequences.

2.4 Alignment comparison

We compared SARA-Coffee with both generic and structure aware

aligners. Generic aligners include: ClustalW 1.82 (Larkin et al., 2007),

MAFFT (default) 6.624b (Katoh et al., 2005), Probalign 1.4 (Roshan

and Livesay, 2006), ProbconsRNA 1.1 (Do et al., 2005) and T-Coffee

8.28 (Notredame et al., 2000). Structure aware aligners use structural

information while assembling an MSA. Structural information can

either be predicted from single sequences, as in LocARNA 1.6.2 (Will

et al., 2007), MAFFT-qinisi 6.864b, MXSCARNA 2.1 (Tabei et al., 2008)

and R-Coffee 8.28 (Wilm et al., 2008), or using compensated mutations,

as in Consan-Coffee 8.28 (Dowell and Eddy, 2006).

2.5 Implementation/distribution

SARA-Coffee is part of the standard T-Coffee distribution, an

open-source freeware available from http://www.tcoffee.org. It re-

quires the SARA program as a plug-in, which is available from http://

structure.biofold.org/sara/. The benchmark dataset, including the evalu-

ation procedure, is available from http://www.tcoffee.org/Projects/

saracoffee.

3 RESULTS

Our main goal was to estimate the effectiveness of structural

information incorporation when assembling RNA MSAs. We

were especially interested in quantifying the usefulness of 3D

information and its relative merits in comparison with inferred
secondary structures. To address this problem, we focused a

large part of this work on the design of BRAliDARTS, a struc-

ture-based benchmark framework. Aside from its full reliance on

3D information, BRAliDARTS’ main strength is its total
independence from any reference MSA. This independence

makes it possible to avoid any bias toward specific alignment

methods.
Having assembled BRAliDARTS, we tested five generic

aligners, five secondary-structure aware aligners and the three

new methods described here on the 41 datasets of

BRAliDARTS. We then calculated 3SP and NiRMSD, the
two metrics developed for BRAliDARTS. The 3SP estimates

the fraction of base pairs aligned with a potentially homologous

pair. This metric merely requires knowing the secondary struc-

ture of the considered sequences. The NiRMSD is used to esti-
mate the variation of intra-molecular distances across

homologous pairs of residue pairs (as defined by the MSA one

evaluates). It relies on the notion that in a correct alignment, the

distance between two residues in a structure should be as similar
as possible to the distance between homologous residues in an-

other structure. This measure is made local by only considering,

for any given residue, the difference of distances between a resi-

due and its neighborhood across a structure. For proteins, a
sphere of radius 20 Å was reported to be an optimal size. In

the context of this work, we tested three values: 20, 50 and 99

(Supplementary Data). We found the 50 Å limit to yield the most

informative correlations, even though no strong differences were
observed between 20 and 50 Å cutoffs.

As our aim was to quantify the importance of structural in-
formation when assembling an RNA MSA, we first calculated

the BP-index (base pair index) for each sequence, representing

the fraction of paired residues as determined by X3DNA. Such

score varies significantly across datasets and ranges from 6 to
90%, with a median close to 70%. We split the BRAliDARTS

accordingly in two subsets, one containing datasets made of

low-density secondary structures (21 datasets, BP-index �70%)

and a second one containing high-density structures (20 datasets,

BP-index470%) (Supplementary Table S1). We then averaged
readouts for each alignment method in both the high- and the

low-density bin (Table 1). On the low-density dataset, we found

the 3SP readouts to behave roughly according to expectations,

with primary methods delivering results �10% points lower than
their secondary counterparts (0.51 versus 0.60). Tertiary methods

like SARA-Coffee were among the best. These observations are

in stark disagreements with NiRMSDs readouts that show

Fig. 2. Example of two alternative RNA MSAs and the associated ter-

tiary structure superposition (top). The dataset is the DARTs cluster 45

(telomerase templates). The MSA in the left panel was produced by

ClustalW (3SP score: 0.08, NiRMSD: 8.85 Å, average RMSD: 10.4 Å);

the right panel MSA was produced by SARA-Coffee (3SP: 0.96,

NiRMSD: 2.74 Å, average RMSD: 2.4 Å. The color gradient on the

MSA, from dark-green to orange, indicates the level of agreement of

the secondary structures (lowest to highest). Nucleotides colored in

violet are not involved in a base-pairing
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primary structure-based methods outperforming those based on

secondary structure (6.73 versus 7.27 Å, the lowest values being

the best ones). SARA-Coffee is one of the only method consist-

ently delivering the best (NiRMSD) or close to the best (3SP)

readouts. The different behavior of the two metrics is reflected

well in Figure 3a, where no correlation appears to exist between

the two measures. The lack of secondary structure in this dataset

explains why the 3SP score fails to properly estimate the 3D

alignment accuracy.
By contrast to this first series of results, our measures on the

other subset of BRAliDARTS, the one with highly connected

structures, gave different results. On this dataset, the 3SP and the

NiRMSD measures are strongly correlated (�0.79, Fig. 3b). The

differences between primary and secondary or tertiary methods

are also much more pronounced. We found SARA-Coffee to be

20 points more accurate (3SP) and 1 Å (NiRMSD) better than

sequence-based methods. On these two metrics, five of six

secondary structure-based methods outperform all the

sequence-based ones. This result confirms that on densely struc-

tured sequences, one can improve MSA accuracy by using sec-

ondary or tertiary structure information, with the best results

being achieved with 3D information. A possible confounding

factor when observing this correlation might be the effect of

low-resolution structures, in which the BP-index could have

been underestimated. In that case, the correlation might have

to do more with structural data quality than with base-pairing

density. To rule out this possibility, we used BRAliDARTS-HQ,

a third reference dataset made of a small number of carefully

selected high-quality and high-density structures, and found the

correlation to be even stronger (�0.92, Fig. 3c). We also tried to

rule out the possibility that the SARA-Coffee improvement

might have resulted from the use of experimental (as opposed

to predicted) secondary structures rather than tertiary structure

information. For that purpose, we designed R-CoffeeReal, an

adaptation of R-Coffee that explicitly uses experimental second-

ary structures. Results (Table 1) show that on the high structural

density dataset, R-CoffeeReal manages to improve significantly

over R-Coffee on most datasets, regardless of the considered

metrics (3SP or NiRMSD).
The burden of requiring an experimental tertiary structure for

each RNA sequence one wants to align dramatically limits the

scope of SARA-Coffee. Unfortunately, such data are scarce. For

instance, of the 4100 RNA PDB chains longer than eight nucleo-

tides available from the PDB, only 2325 have a close homolog

(495% identity) to some of the 6 million sequences reported in

Rfam 11.0. To evaluate the effectiveness of SARA-Coffee in a

more realistic context, we asked whether using only a handful of

structures might be enough to significantly improve MSA mod-

eling (BestPair method). The results are not strongly conclusive,

Fig. 3. Correlations between the NiRMSD and the 3SP measure. In all three figures SARA-Coffee is represented by the point with the lowest NiRMSD

value. (a) Low-density structures: each point represents one of the 13 MSA methods tested here. The horizontal axis corresponds to the average 3SP,

expressed as the fraction of base pairs aligned with equally matching pairs (high values correspond to the best readouts). The average was estimated on

the 21 datasets in which �70% of the nucleotides are involved in a base pair (low-density structures). On this axis, the highest values correspond to the

best readouts. The vertical axis corresponds to a similar average made on the NiRMSD readouts. The Pearson correlation between the two variables is

0.19. (b) High-density structures: similar graph estimated on the 20 datasets in which470% of the nucleotides are involved in a base pair. The Pearson

correlation is �0.79. (c) Same measures on the BRAliDARTS-HQ

Table 1. Comparative accuracy

Structural

information

Method BP/nuc50.70 BP/nuc� 0.70 Time (s)

3SP NiRMSD 3SP NiRMSD

Primary ClustalW 0.46 6.18 0.55 5.74 1

T-Coffee 0.54 7.08 0.66 5.42 37

Mafft 0.54 6.30 0.66 5.43 4

Probalign 0.48 6.51 0.60 5.76 12

ProbconsRNA 0.55 7.56 0.69 5.54 14

Average 0.51 6.73 0.63 5.58

Secondary Mafft-qinsi 0.58 8.11 0.77 5.32 20

LocARNA 0.64a 6.55 0.79 5.11 601

MXSCARNA 0.61 7.53 0.80 5.45 15

R-Coffee 0.57 7.36 0.77 5.32 229

R-CoffeeReal 0.61 7.15 0.80 5.23 511

Consan-Coffee 0.61 6.91 0.80 5.11 1 168135

Average 0.60 7.27 0.79 5.26

Tertiary or

secondary

BestPair 0.59 7.14 0.76 5.31 551

Tertiary SARA-Coffee 0.62 5.69a 0.83a 4.53a 19324

Structural information indicates the type of information used by the considered

method. Method: multiple sequence alignment method. BP: base-pairing threshold

of the considered subset. 3SP: average 3SP score; NiRMSD: average NiRMSD in

Å; Time: total time on the full set. aBest readouts in each column.
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with BestPair being only slightly more accurate than other struc-

ture-based methods (NiRMSD), albeit significantly less than

SARA-Coffee and not significantly more accurate with respect

to the 3SP measure than any structure-informed methods.

This result, which is rather consistent with similar protein

analysis, suggests a strong dependence between the final model

accuracy and the overall amount of available structural

information.
All together, the results measured on the low- and the

high-density BRAliDARTS subsets suggest some heterogeneity

and a strong sensitivity to datasets structural composition. When

dealing with highly structured sequences, secondary and tertiary

structure-based methods perform better, and result in highly

correlated secondary (3SP) and tertiary (NiRMSD) readouts.

This correlation seems to disappear when analyzing low-density

structures. We tested this hypothesis a bit further by taking

advantage of the availability of 13 alternative MSAs for each

single dataset. This variety allowed us to estimate a Pearson

correlation coefficient between the 3SP and the NiRMSD of

each single dataset and plot the resulting values against the

BP-index (Fig. 4). Despite a rather weak correlation, the

trend shows an increasing correlation above a BP-index of

60%, with most datasets with 480% BP-index having strong

correlations. This result suggests secondary structure-based

methods to be best suited for datasets having a

BP-index 480%. We tested this hypothesis by measuring on

each dataset, the difference in NiRMSD readouts between pri-

mary and secondary structure-based methods (Fig. 5a). As ex-

pected, we found that below a BP-index of 60%, primary

methods tend to give better results, whereas above this value,

secondary-structure aware methods often result in an

improvement. A similar analysis carried out by comparing pri-

mary- and tertiary-based approaches (Fig. 5b) shows that

SARA-Coffee yields its most significant improvements on data-

sets with a BP-index460%, but rarely degrades the MSAs below

this value.
We completed our analysis by doing a pairwise comparison of

all the methods considered here and by counting, for each metric,

the number of times any method outperforms any other method

(Supplementary Figs S2 and S3). Such a comparison is

important, as it makes it possible to estimate the statistical

support for the observed differences. We found most differences

to be statistically significant on the 3SP method, whereas on the

NiRMSD, SARA-Coffee is the only aligner whose behavior

appears to be statistically different from most alternatives on

most datasets. These comparisons, which reflect individual data-

set readouts, also support the notion of secondary structure

information being more useful when dealing with highly

structured sequences.

The CPU requirements of SARA-Coffee are significantly

higher than those of sequence-based methods, and we found

our method to be �100 times slower than LocARNA, but

also �100 times faster than Consan-Coffee, with the number

of sequences being the main source of CPU cost

(Supplementary Fig. S1). Considering the number of available

PDB structures, this makes SARA-Coffee a realistic option for

the computation of all currently available datasets on a standard

desktop machine.

4 DISCUSSION

In this work, we introduce SARA-Coffee, a new tool for gener-

ating multiple RNA alignments based on 3D structure. We show

how the usage of tertiary information can result in significantly

improved RNA multiple alignments. We quantified these im-

provements using a purpose-built benchmark framework

named BRAliDARTS. BRAliDARTS is made of 41 collections

of homologous RNA sequences with known 3D structures and

two evaluation metrics independent from any reference align-

ment. The need to assemble our own reference dataset stems

from the requirement of having references in which all sequences

have a known 3D structure (PDB). This requirement prevented

us from testing SARA-Coffee on more established reference

datasets like BRAliBase. We nonetheless found that our

BRAliDARTS benchmark on the 21 datasets with a high base-

pair index shows a good agreement with the ranking of sequence-

based alignment methods previously reported on BRAliBase

(Wilm et al., 2008). We also found this new dataset to confirm

the observation made on BRAliBAse that Consan-Coffee is the

most accurate aligner based on ab-initio predictions. These ob-

servations suggest that BRAliDARTS has, at least for this highly

structured component, benchmarking properties similar to those

of BRAliBase.
An important focus of our work has been the precise quanti-

fication of structural information usefulness when assembling an

RNA MSA. The comparison of methods that use primary, sec-

ondary and/or tertiary structure information reveals that aligners

using secondary structure information are rarely suitable when

dealing with sequences in which 560% of the nucleotides are

involved in a base pair. Below this figure, methods that rely on

predictions appear to induce a degradation of MSA accuracy. By

contrast, tertiary structure-based methods like SARA-Coffee

almost always manage to improve MSA models accuracy,

Fig. 4. Dependency of the NiRMSD/3SP correlation on structural dens-

ity. Each point corresponds to one of the 41 datasets used for benchmark.

The horizontal axis indicates the fraction of nucleotides involved in a base

pair in the considered dataset. The vertical axis corresponds to the

Pearson correlation coefficient between the NiRMSD and the 3SP read-

outs measured on the MSAs produced using the 13 alternative methods

displayed on Table 1
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regardless of the fraction of structured nucleotides. The easiest

explanation for the lack of accuracy of aligners using predicted

secondary structures is probably the tendency of over-predicting

secondary structures on these sequences. Indeed, a closer inspec-

tion on the low-fraction structure shows that these datasets are

enriched in heterodimer interactions (RNA/RNA or RNA/pro-

teins), a finding that confirms the well-known issue of accurately

predicting ab-initio structures without taking into account the

folding context.

In the real-world, RNA tertiary structure information is rather

scarce, and we therefore had to ask whether alternative sources

of information could be reasonable substitutes for tertiary struc-

ture data. For instance, it is now possible to do large-scale sec-

ondary structure predictions using high-throughput sequencing,

and the two leading technologies for single-molecule sequencing

techniques, PacBio and Nanopore, have been announcing kits

dedicated to large-scale secondary structure determination. It is

therefore realistic to consider that a wide amount of secondary

structure information will soon be available, although its accur-

acy still needs to be verified. We tested the effect of using this

information using a variation of the R-Coffee method named

R-CoffeeReal. Our results are encouraging. They show that

when dealing with highly structured RNAs (470%), the use of

experimental secondary structure results in MSAs significantly

better than those obtained with alternative secondary methods,

even though accuracy does not reach the level of pure tertiary

structure-based alignments. This result was also supported by the

high correlation (0.92) observed when measured on

BRAliDARTS-HQ.

The main limitation of our work is probably its reliance on a

rather small collection of datasets. Furthermore, sequences

making up this dataset are also rather short (44 nucleotides on

average, 213 at most). It is not entirely clear how the behavior of

methods relying on secondary structure prediction can be extra-

polated to longer sequences, as it is well-known that length tends

to impact structure prediction accuracy (Ding et al., 2008;

Doshi et al., 2004). By contrast, it is likely that the good

performances measured on R-CoffeeReal and all methods

using experimental data will hold reasonably well. Our approach

is generic and could easily be extended to any pairwise RNA

structure aligner. In practical terms, T-Coffee is an open-source

package that can be adapted by anyone. It has been designed so

as to allow the introduction of any third-party package

with minimal effort, thus making the incorporation of new

third-party RNA alignment package mostly a benchmarking

exercise.
No ideal substitute seems to exist for experimental data when

modeling RNA homology. A method like SARA-Coffee could

therefore be useful for anyone requiring high-quality MSA mod-

eling for sequences having known 3D structure, and it is prob-

ably a realistic expectation that its relevance will grow as RNA

structural databases become more populated.
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