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Abstract: The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with 
resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based 
on its sequence similarity to homologous structures, is the most accurate computational method for structure prediction. In 
the last two decades, significant progress has been made on comparative modeling methods. Using the large number of 
protein structures deposited in the Protein Data Bank (~65,000), automatic prediction pipelines are generating a 
tremendous number of models (~1.9 million) for sequences whose structures have not been experimentally determined. 
Accurate models are suitable for a wide range of applications, such as prediction of protein binding sites, prediction of the 
effect of protein mutations, and structure-guided virtual screening. In particular, comparative modeling has enabled 
structure-based drug design against protein targets with unknown structures. In this review, we describe the theoretical 
basis of comparative modeling, the available automatic methods and databases, and the algorithms to evaluate the 
accuracy of predicted structures. Finally, we discuss relevant applications in the prediction of important drug target 
proteins, focusing on the G protein-coupled receptor (GPCR) and protein kinase families. 
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INTRODUCTION 

 Protein three-dimensional (3D) structure is essential for 
functional annotation and rational drug design [1]. 
Experimental techniques to crystallize and characterize 
protein structures are difficult, resulting in an increasing gap 
between the number of available protein sequences and 
known structures (see Fig. 1). Hence, the main goal of 
computational prediction methods is to link the protein 
sequence to its 3D structure and finally to its functionally 
relevant features. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Number of entries in the UniProt [164] and PDB [11] 
databases. 
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 The primary sequence of a protein determines its 3D 
structure, but the mechanism of the transition from unfolded 
to folded state is not completely understood. Protein folding 
is a complex problem that has never been solved by 
analytical approaches, mainly because there is no theoretical 
model to describe the atomic interactions within the protein 
and the effect of the solvent. Early computational studies on 
limited protein structure data revealed that within a protein 
family, members from different species conserved structure 
more effectively than sequence [1-3]. Hence, the classical 
concept of homology, which referred to structural 
correspondence between traits [4] derived from a common 
ancestor, was expanded to molecular biology. For proteins, 
homology indicates derivation from a common “ancestor” 
[5] and is often inferred using sequence similarity. Given 
that protein structure is more conserved than sequence, 
sequence similarity suggests structural similarity, enabling 
structure prediction of proteins with similar sequences. Even 
though analytical solutions to the folding problem are not 
available, empirical methods based on sequence similarity 
have shown good performance. 

 Of the dominant approaches to protein 3D structure 
prediction, comparative modeling and fold recognition rely 
on the assumption of structural similarity based on sequence 
similarity. Both approaches require a minimal level of 
sequence similarity between the unknown protein (target) 
and at least one protein with known structure (template). For 
this reason, they are also known as template-based 
approaches. In contrast, new fold methods do not explicitly 
require any template structure and therefore have broad 
applicability. The new fold prediction algorithms can be 
classified as ab initio methods when they only rely on 
physicochemical principles or de novo methods when they 
include information from known protein structures [6]. Ab 
initio methods based on all atom simulation with empirical 
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force fields have been successfully used to predict the 
folding of short peptides [7, 8]. Alternatively, the more 
accurate de novo algorithms use a library of short protein 
fragments extracted from the PDB [9] or restraints from 
threading results to reduce the space of possible 
conformations [10]. However, predictions from new fold 
methods are still generally lower quality than those from 
template-based approaches. Template-based methods are 
highly accurate and can predict structures very similar to the 
native structure. Their application, however, is limited to 
cases for which a homologous protein with known structure 
is available. 

 To expand the application of template-based prediction 
methods to proteins with unknown fold, a better coverage of 
protein structural space is required. As evidenced by the 
continued discovery of new protein structures corresponding 
to new folds, our knowledge of protein three-dimensional 
space is incomplete. The current Protein Data Bank (PDB) 
[11] contains ~65,000 protein structures corresponding to 
~1,400 unique folds from the SCOP database [12]. To 
augment this, worldwide structural genomics initiatives 
(SGIs) have been launched to explore different regions of 
protein structural space by selecting targets from novel, 
structurally uncharacterized protein families [13]. To date, 
the SGIs have deposited more than 9,600 new structures in 
the PDB. Analysis of structures deposited through 2006 
showed that SGI structures compared to non-SGI ones have 
a higher rate of new SCOP folds and superfamilies [14]. 
Recent studies suggest that full coverage of protein structural 
space is achievable by selecting targets from large and 
diverse superfamilies with varied structures and functions 
[15-17]. 

 Comparative modeling methods have also benefited from 
the increase in computational power. Algorithms are now 
faster and more accurate. Biannually since 1994, the 
assessors of the Critical Assessment of techniques for protein 
Structure Prediction (CASP) gauge the advancements in 
protein structure prediction. Results from the eighth edition 
show that template-based methods generally produce the 
most accurate predictions. A positive correlation also exists 
between prediction accuracy and target and template 
sequence similarity [18]. Structural alignments of homologs 
likewise improve with increasing sequence similarity [1]. 
The minimum level of sequence similarity to infer structural 
similarity has been well characterized [19]. It is now largely 
accepted that template-based prediction methods can be 
safely applied if target and template have more than 35% 
sequence identity for alignments of ~100 residues. High 
quality models from comparative modeling can be suitable 
for a wide range of applications, including functional 
annotation, ligand-binding site prediction, virtual screening, 
docking of small molecules, and molecular replacement. 

 In this review, we focus on comparative modeling 
structure prediction methodology. We first discuss the 
theoretical basis of comparative modeling, including method 
development and predicted structure evaluation. We then 
present applications of comparative modeling, focusing on 
the prediction of drug target protein structures from the G-
protein-coupled receptor (GPCR) and protein kinase 
families. Finally, we discuss future applications of 
comparative modeling and its impact on drug design. 

PROTEIN STRUCTURE PREDICTION BY COMPA-
RATIVE MODELING 

 The prediction of protein three-dimensional (3D) 
structure is still an unsolved problem. Comparative modeling 
approaches can be successful when there is detectable 
sequence similarity between the unknown protein (target) 
and the structure of another protein (template). The basis of 
this empiric observation is that amino acid substitution 
operates within the constraints of structure and function. 
Therefore, structure and function tend to be more conserved 
than sequence. 

Theoretical Basis of Comparative Modeling 

 The application of comparative modeling approaches is 
possible because small changes in protein sequence usually 
result in small changes in 3D structure [1]. Mutations 
accumulated during evolution are constrained to conserve 
protein intramolecular and intermolecular interactions that 
mediate designated functions in protein families and 
superfamilies [20]. Structural comparison of 25 proteins 
from eight families revealed the existence of highly 
conserved structural regions [1]. For 32 pairs of homologous 
proteins, segments with greater than 50% sequence identity 
showed more than 90% of C  atoms to be structurally 
superimposed, while less conserved regions (~20% sequence 
identity) showed less than 42% structural similarity. The 
calculated Root Mean Square Deviation (RMSD) for the 
high and low sequence conservation segments measured ~1 
Å and ~3 Å, respectively. This analysis [1] quantitatively 
defined the expected degree of success in the prediction of a 
target protein structure from a homologous template 
structure as a function of sequence similarity. 

 Sequence similarity not only establishes the accuracy but 
also the applicability of comparative modeling. As the 
number of solved protein structures increased, a more 
accurate and exhaustive analysis of sequence versus 
structural similarity was performed [19]. A large set of 
exhaustive pairwise alignments between 792 proteins with 
less than 25% sequence identity was used to define the 
“twilight zone”. This heterogeneous region of sequence 
alignment space corresponds to pairs of non-homologs (true 
negatives) and remote homologs (false negatives). The curve 
separating the “twilight zone” from the region of confident 
homology detection, which is populated by alignments 
between homologs (true positives), has been estimated using 
alignments from structurally related proteins from the FSSP 
database [21]. This curve [19] outperformed a previous curve 
in discriminating between true positive and false positive 
alignments [22]. Specifically, the new separation curve is 
more conservative for shorter alignments and less 
conservative for longer alignments to decrease the false 
positive rate and increase the true positive rate, respectively 
(see Fig. 2). Comparative modeling is generally constrained 
to the region of confident homology detection. For some 
targets, however, no structural neighbors fall in this region 
even with the growth of structural data. Incomplete 
knowledge of structural space therefore implies that the 
problem of the “twilight zone” is limiting the usage of 
comparative modeling. 
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Fig. (2). Twilight zone curves from Rost’s (continuous line) and 
Sander’s (dashed line) works [19, 22]. 

Comparative Modeling Method 

 Conservation of protein 3D structure between two 
proteins with similar sequences allows the prediction of the 
structure of one protein using the structural features of the 
other (see Fig. 3). Accordingly, comparative modeling 
procedures can be divided into four sequential steps: 

1. Fold assignment and template selection 

2. Target-template sequence alignment 

3. Model building and refinement 

4. Prediction evaluation 

Fold Assignment and Template Selection 

 Fold assignment and template selection is the first step to 
all comparative modeling methods. It encompasses the com-
parison of the target protein to a set of proteins with known 
structural features, searching for homologous proteins that 
are likely to have a similar structure. Template protein 
structures used for this step are collected from the PDB [11], 
though the SCOP [12], DALI [23] and CATH [24] databases 
are frequently used to narrow the search. The simplest 
searching methods are based on a pairwise sequence 
comparison of target and template using BLAST [25] or 
FASTA [26]. The PSI-BLAST algorithm [27] was later 
developed to improve the detection of homologous proteins 
with a low level of sequence identity. It is based on an 
iterative BLAST search that for a given sequence, performs a 
run of BLAST to select a set of homologs from a sequence 
database, calculates a position-specific scoring matrix from 
the derived multiple sequence alignment, and uses the 
resulting matrix to scan the database for new homologs. 
Profile-based algorithms, which implement an alignment 
procedure that includes information from related proteins, 
perform much better than standard methods based on 
pairwise alignments [28-31]. Among profile-based methods, 
hidden Markov models (HMMs) perform the best [32]. The 
most successful profile HMM procedures for detection of 
remote protein homologs are SAM [33], HMMER [34], and 
HHPred [32]. More details about remote homology search 
methods are discussed in a previously published review [35]. 

 In situations where more than one template is found, the 
custom is to select the template protein with highest 
sequence identity to the target. This increases the likelihood 
of a high quality prediction. However, there are exceptions 
to template selection depending on the final purpose of the 
predicted structure. If the aim is to study interactions 
between the target and a small ligand or another protein, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Flowchart of comparative modeling method. 
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templates that contain similar types of interactions are ideal. 
On the other hand, if the aim is to study the conformation of 
an active site, high-resolution templates are preferable. 
Selection of the best template is therefore mainly driven by 
problem-specific considerations. Alternatively, the use of 
information from multiple templates can increase the quality 
of the predicted structure [36], though the standard 
comparative modeling procedure uses only one template. 

Target-Template Sequence Alignment 

 Target-template sequence alignment aims to establish the 
correct correspondences between the residues of the target 
and template. Standard sequence alignment methods such as 
Needleman–Wunsch [37] and Smith–Waterman [38] are 
based on dynamic-programming algorithms and can be 
suitable for this task. They calculate an alignment score 
using substitution scoring matrices such as BLOSUM [39] 
and PAM [40]. Most template selection and fold assignment 
methods will also return a default sequence alignment 
between the target and template. When sequence identity 
between target and template is high, standard methods 
produce similar alignments. However, when sequence 
identity is low (less than 40%), more sophisticated alignment 
procedures are needed. In these cases, methods relying on 
multiple sequence alignments and/or structure information 
derived from homologous proteins have achieved better 
results [28, 30, 41, 42]. These resources are used to build 
sequence profiles for the target and template proteins for 
subsequent profile alignment. Although automated methods 
for sequence alignment have reached a good level of 
accuracy, manual inspection of the calculated alignment is 
still strongly suggested when sequence similarity is lower 
than 40%. 

Model Building and Refinement 

 Model building involves the explicit prediction of the 
target structure atomic coordinates using residue 
equivalences defined in the sequence alignment. The 
methods for model building are based on three main 
approaches: rigid body assembly [43], segment matching 
[44], and spatial restraints satisfaction [45]. Modeling based 
on rigid body assembly uses small rigid bodies derived from 
structurally aligned proteins. First, the atomic coordinates of 
the conserved regions are used to reconstruct the main chain 
of the conserved residues, forming the protein core. Loops 
are then built in by scanning a database of structural peptide 
fragments, searching for those that fit the conformation of 
the core. When the backbone of the structure is complete, 
side chain atom coordinates are predicted, taking into 
account the preferred intrinsic residue conformations and 
those of the equivalent residues in the template. Modeling by 
segment matching is based on the observation that 
approximately 100 six-residue peptides can account for 76% 
of conformational space [46]. These peptides can serve as 
the building blocks for structure prediction. Similar to rigid 
body assembly, the target’s protein core is built using select 
C  atoms from conserved residues. Appropriate peptide 
building blocks are then fitted into the structure to produce 
an all atom model. Modeling by satisfaction of spatial 
restraints uses the idea that structural features of conserved 
residues are similar. For this class of methods, evolutionary 
conservation is a criteria to select and generate homology-

based restraints for the target structure using distances and 
angles between equivalent residues in the template. These 
restraints are usually supplemented with generic 
stereochemical restraints from molecular mechanics force 
fields. Finally, an optimization procedure is performed to 
search for global low energy conformations that minimize 
the number of restraint violations. Restraint-based modeling 
approaches are the most flexible because they can easily 
incorporate many different types of restraints and 
constraints. These can be derived from different template 
structures or from various experimental data sources like 
NMR experiments, fluorescence spectroscopy, and site-
direct mutagenesis. 

 In general, the most difficult tasks in model building are 
the prediction of loop regions and side-chain conformations. 
The frequent insertions and deletions in the exposed loop 
regions are the main reason for loop structural variability 
between members of the same protein family. As a result, 
dedicated methods have been developed to predict loop 
regions either by hand using molecular graphics [47], 
through database searching [48], or by ab initio methods 
[49]. 

 For side chain atoms, the large number of possible 
conformations reflected in the distribution of 1 and 2 
dihedral angles makes predicting them difficult. For building 
side chains, three major approaches have been developed 
[50-52]. First is the Minimum Perturbation protocol in which 
each substitution is followed by a rotation about the side 
chain’s torsion angles to relieve clashes [51]. Second is the 
Coupled Perturbation protocol in which the side chain 
torsion angles of structurally adjacent residues are also 
rotated [52]. In recent years, major improvement in building 
side chains has been achieved using rotamer libraries. The 
best representation of this method is the program SCWRL 
[50], which makes use of backbone-dependent rotamer 
libraries through a search method based on graph theory. 

 The refinement of initial comparative modeling 
predictions generally involves simultaneous optimization of 
the predicted conformations for the non-conserved regions 
along with the physically adjacent regions [53-55]. In 
principle, molecular dynamics (MD) techniques should be 
able to achieve this goal. Given a sufficiently accurate 
interatomic force field, MD simulations performed in an 
appropriate environment should lead a protein model to its 
native conformation, reflective of the global free energy 
minimum at the given temperature and environment. 
However, previous CASP experiments indicate the 
conformational space explored is fairly local to the initial 
conformation [55]. Four reasons have been suggested: the 
ruggedness of the potential energy landscape, inadequate 
sampling of alternative conformations, insufficient accuracy 
in the description of the interatomic forces, and too short 
simulation times [53, 55, 56]. To solve these problems, 
present optimization attempts with molecular dynamics are 
normally based on limited conformational sampling with a 
detailed force field, or more extensive sampling with a 
simplified force field [56]. However, these approaches have 
proved to be ineffective, and thus using MD simulation as a 
refinement method is only useful for limited structural 
arrangements [57]. An analysis of the performances of six 
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comparative modeling methods has been recently published 
[58]. 

Prediction Evaluation 

 The final step in comparative modeling is the evaluation 
of predicted structures. Evaluation focuses on the model as 
an entity or as specific segments. Both the target-template 
alignment and the geometry and stereochemistry of the 
predicted model are assessed. Computational methods such 
as PROCHECK, AQUA, SFCHECK, Squid, and MolProbity 
[59-62] check the stereochemistry of the predicted structure, 
including bond lengths and angles, peptide bond and side-
chain ring planarities, chirality, main-chain and side-chain 
torsion angles, and clashes between non-bonded pairs of 
atoms. Another class of programs evaluates the predicted 
structure using statistical potentials of mean force [63-66]. 
This approach calculates the structural environment of each 
atom in the model and compares it with the mean expected 
environment in the high-resolution template structure. 
Although there is debate about the theoretical basis of 
statistical potential-based methods [67-69], they have been 
successfully applied to model assessment and selection of 
near native conformations from decoy predicted structures 
[70]. In the recent CASP8 experiments, QMEAN algorithm 
[71], which combines different structure-based scoring 
functions, was ranked among the best methods for global and 
local model quality assessment [72]. Alternative evaluation 
methods use physics-based energy functions to score the 
energy of the predicted model, taking into account bonded 
and non-bonded interactions between the atoms in the 
system. Therefore, classical physics-based energies for 
molecular dynamics simulations, such as AMBER [73] and 
CHARMM [74], have been used to assess the quality of 
predicted models [75,76]. A more complete description of 
the methods for model assessment has been recently 
published [70]. 

 After evaluation, depending on the quality of the target 
structure, it is possible to go back to the first or second step 
to select a better template or to improve the quality of the 
sequence alignment. In these cases, the prediction procedure 
is iterated until the final structure reaches an acceptable level 
of accuracy. 

Accuracy and Limitations of Comparative Modeling 

 Comparative modeling structure prediction relies on an 
evolutionary relationship between target and template. 
Incorrect assumption of this relationship will affect template 
selection and propagate to the quality of the target-template 
sequence alignment and the identification of the target-
template structural and functional divergences [1]. 
Application of comparative modeling can therefore be 
limited by the absence of an appropriate template. This can 
occur when the target is from a new fold class not 
represented in the PDB. Identification of such targets 
typically involves a Z-score, which evaluates the quality of 
the selected template. It compares the score of the target and 
template pair with the distribution of scores from all possible 
target and template pairs. In this case, the templates are a 
representative set of all protein folds, where a high quality 
template corresponds to a high Z-score [77-79]. 

 Comparative modeling can also suffer from weak 
evolutionary relationships. Weak sequence similarity 
between the target and template leads to incorrect selection 
of template structure or incorrect alignment of target and 
template. Thus, a lower level of sequence similarity in the 
alignment generally corresponds to a less accurate predicted 
structure [80]. Comparative modeling is particularly difficult 
in the “twilight zone,” where correct templates and 
equivalences between target and template residues are hard 
to detect. For the identification of appropriate templates, 
powerful methods for remote homolog detection and 
statistical potentials for scoring the compatibility of the 
target sequence to the template fold can improve results. 
With respect to uncertain residue equivalences between 
target and template, prediction methods can usually return an 
ensemble of alternative solutions. Therefore, the selection of 
a near native structure is a key issue in protein structure 
prediction. Clustering algorithms, built on the assumption 
that well-populated structural clusters are more reflective of 
native conformations than low energy structures, have been 
developed to identify high quality predictions [72, 81, 82]. 

 The accuracy of comparative modeling can further be 
improved using multiple template structures. However, 
additional data is only beneficial in certain scenarios. 
Generally, the templates under consideration should share a 
similar low level of sequence identity (less than 30%) with 
the target as well as with each other [83]. The benefit derived 
from this structural complementarity is dependent on the 
accuracy of the modeling alignment. Therefore, the 
development of optimized methods for the combination of 
multiple templates is still one of the major bottlenecks in 
comparative modeling [84]. 

Comparative Modeling at CASP 

 The Critical Assessment of techniques for protein 
Structure Prediction (CASP) evaluates the progress of 
methods in protein structure prediction. It was observed that 
the use of multiple templates or template fragments 
improved predictions over the single best template in 
approximately 1/3 of 64 template-based models (TBMs) 
[85]. Surprisingly, the best predictions from automated tools 
were not significantly less accurate than the manually 
curated multiple template models. In fact, the best automated 
prediction server ranked fifth in the prediction of the 64 
TBMs with accuracy comparable to the human curated 
models. These results support the idea that automatic tools 
enable large-scale structural predictions, providing models 
with accuracy on par with manually generated models. 

 The CASP assessors use several measures to evaluate the 
quality of predicted structures [86]. Model accuracy and 
quality are measured on the overall structure or on a per 
residue basis. A specific category in CASP tests the available 
methods for estimating model accuracy, using Pearson’s 
correlation coefficient between observed and predicted 
correctness as the score. Algorithms based on the clustering 
of alternative models are leaders in this category of CASP 
[72, 81]. An analysis of the performance of quality 
assessment methods in CASP8 has been recently published 
[87]. 
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Resources and Tools for Comparative Modeling 

 In recent years, many different tools and resources for 
comparative modeling have been made available online. 
Although a complete description of available methods for 
comparative modeling is not the aim of this review, we 
provide a select list of representative tools (see Table 1). 
Depending on the user’s familiarity with computational 
tools, three types of end users are possible. ModBase [88], 
Swiss-Model [89], and Protein Model Portal [90] give access 
to large repositories of pre-computed predicted structures 
associated to millions of protein targets. These resources are 
particularly useful for those without strong experience in the 
use of computational tools and need to retrieve generic 
models for target proteins. Intermediate users can predict 
target structures using automated servers like LOMETS, 
ModWeb, or Robetta and evaluate the results using statistical 
potential-based tools like ANOLEA [91] or PROSA [92]. 
Finally, expert users can make use of all classes of tools 
reported in Table 1 by following the comparative modeling 
methodology outlined above. Depending on the final usage 
of the predicted structure, more complicated procedures such 
as using multiple templates or enforcing restraints could be 
performed with the listed tools. 

APPLICATIONS OF COMPARATIVE MODELING 

 The first modeling experiment in 1975 predicted the 
structure of the calcium binding component of troponin 
using its homology to the calcium binding motif of 
parvalbumin [93]. Although it was the first published model, 
it was not deposited in the PDB until 1980, two years after 
other models were deposited [94, 95]. Nowadays, the large 
number of available structural data and user-friendly tools 
make large-scale comparative modeling practical. In this 
section, we summarize the applications of comparative 
modeling, focusing on the available computational tools and 
resources for drug design. In particular, we describe the 
application of comparative modeling to the prediction of G 
protein-coupled receptor (GPCR) and protein kinase families 
for virtual screening experiments. 

Model Accuracy and Applications 

 Model accuracy should always be estimated prior to 
release and usage as it determines the predicted structure’s 
suitability for biological experiments. As comparative 
modeling relies on homology between target and template, 
which is inferred by sequence similarity, the level of 
sequence identity between target and template defines three  
kinds of applications. Low quality models with sequence 
identity lower than 30% are in the “twilight zone” and are 
expected to have less than 50% of C  atoms within 3.5 Å of 
their correct positions. These models can be used to confirm 
or reject the hypothesis that two remotely related proteins 
belong to the same fold class [96, 97]. Differing folds 
between target and template will lead to poor geometry and 
stereochemistry scores during prediction evaluation. Medium 
quality models, predicted using templates with sequence 
identity between 30% and 50%, have approximately 85% of 
C  atoms within 3.5 Å of the native three-dimensional 
structure. They are suitable for refinement of functional  
 

predictions [98, 99] and prediction of binding affinity 
changes due to site-directed mutagenesis. High quality 
models with alignment sequence identity higher than 50% 
have high alignment Z-score and are expected to have 
average accuracy comparable to low resolution X-ray 
structures (3 Å resolution) or medium resolution NMR 
structures [100]. They can be used for docking small ligands 
[101] or for predicting the structure of interacting proteins 
[102, 103]. 

 Models with a moderate level of accuracy have also seen 
additional applications. In molecular replacement, models 
enable recovery of the information lost when reducing from 
the three-dimensional space of the native structure to the bi-
dimensional space of the X-ray diffraction experiment [104]. 
An automatic method for molecular replacement [105] has 
been developed for the reconstruction of new protein 
structures from X-ray data. Rational protein design has also 
benefited from comparative modeling. Antibodies represent 
a special case [106] for which the relationship between the 
sequence and structure of the functional site is well defined. 
This has allowed the rational design of new antibodies with 
different biochemical properties, which have had broad 
application in therapy and research [107-111]. More 
complex is the prediction of enzyme structures to be 
subsequently used in the design of enzyme inhibitors. 
Because enzymes can exist in different conformations, 
template selection must be driven by problem-specific 
considerations that account for the end use of the predicted 
model. These changes in enzyme structures are difficult to 
predict and compute [112, 113], but high quality models 
have been built and used for docking small ligands and for 
designing new inhibitors [114-116]. 

Computational Modeling and Drug Design 

 Structure libraries of drug target proteins play a key role 
in drug design, enabling computational methods to score and 
rank the predicted affinity between drugs and targets. This 
process is known as virtual screening [117] and has reduced 
the costs of experimental high-throughput assays. Virtual 
screening is knowledge-based and requires structural 
information of the target and ligand (ligand-based screening) 
or of the target alone (target-based screening) [118]. The 
process begins with identification of the protein binding-site 
and determination of the residues that interact with the 
ligand. This is the target binding-site into which different 
drugs can be docked and scored for binding affinity. 
Docking algorithms predict the relative orientation of the 
target and ligand with respect to one another. Rigid targets 
and ligands dominated in the past, but the increase in 
computational power has produced a shift towards docking 
flexible molecules [119]. Although a description of 
computational methods for drug design is not the aim of this 
review, we have included a selection of available resources 
and tools for predicting the binding affinity between a model 
structure and ligand (see Table 2). This list contains 
databases of chemical compounds and target proteins as well 
as web available tools for binding site prediction, small 
molecule docking, virtual screening, and drug design. An 
exhaustive list of resources for drug design is provided by 
the Click2drug website (http://www.click2drug.org) at the  
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Table 1. Resources and Tools for Comparative Modeling 

 

Name URL Ref. 

Comparative Modeling Repositories 

MODBASE http://modbase.compbio.ucsf.edu [88] 

Protein Model Portal http://www.proteinmodelportal.org/ [90] 

SWISS-MODEL Repository http://swissmodel.expasy.org/repository [89] 

Structure and Classification Databases 

CATH http://www.cathdb.info [24] 

PDB http://www.pdb.org [11] 

PFAM http://pfam.sanger.ac.uk [165] 

SCOP http://scop.mrc-lmb.cam.ac.uk/scop [12] 

Template Selection 

BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi [25] 

FASTA http://www.ebi.ac.uk/Tools/fasta [26] 

FFAS03 http://ffas.ljcrf.edu [166] 

HHPred http://toolkit.tuebingen.mpg.de/hhpred [167] 

Phyre http://www.sbg.bio.ic.ac.uk/~phyre [168] 

SAM-T08 http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html [169] 

SP5 http://sparks.informatics.iupui.edu/SP5 [170] 

Threader http://bioinf.cs.ucl.ac.uk/threader [171] 

Alignment Tools  

CLUSTALW http://www.ebi.ac.uk/clustalw [172] 

MAFFT http://mafft.cbrc.jp/alignment/server [173] 

MUSCLE http://www.drive5.com/muscle [174] 

T-Coffee http://www.tcoffee.org [175] 

Automatic and Manual Modeling 

3D-JIGSAW http://bmm.cancerresearchuk.org/~3djigsaw [176] 

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER [177] 

LOMETS http://zhanglab.ccmb.med.umich.edu/LOMETS [178] 

MODELLER http://www.salilab.org/modeller [179] 

MODWEB https://modbase.compbio.ucsf.edu/scgi/modweb.cgi [180] 

ROBETTA http://robetta.bakerlab.org [181] 

SWISS-MODEL http://swissmodel.expasy.org [182] 

Model Evaluation 

ANOLEA http://protein.bio.puc.cl/cardex/servers/anolea [91] 

DFIRE http://sparks.informatics.iupui.edu/yueyang/DFIRE [183] 

FRST http://protein.bio.unipd.it/frst [184] 

HARMONY http://caps.ncbs.res.in/harmony [185] 

ModFOLD http://www.reading.ac.uk/bioinf/ModFOLD/ [81] 

MolProbity http://molprobity.biochem.duke.edu [62] 

PROCHECK http://www.ebi.ac.uk/thornton-srv/software/PROCHECK [186] 

ProQ http://www.sbc.su.se/~bjornw/ProQ [187] 

PROSA-web https://prosa.services.came.sbg.ac.at [92] 

QMEAN http://swissmodel.expasy.org/qmean [188] 

VERIFY3D http://nihserver.mbi.ucla.edu/Verify_3D [189] 
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Swiss Institute of Bioinformatics. In literature, there are 
many examples of target protein structural models that have 
been successfully used for the discovery and optimization of 
new compounds [120-123]. In this review, we focus on G-
protein-coupled receptors and protein kinases, two of the 
most targeted protein families in drug discovery. 

Modeling the G-Protein-Coupled Receptors 

 Transmembrane proteins (TM) participate in a wide 
range of important biological processes such as 
transportation of small molecules, signal transduction, and 
cell recognition and communication. They comprise 
approximately 30% of genes in the human genome, but are 
significantly under-represented in structural databases. In the 
PDB, TM proteins comprise only about 1% of total 
deposited structures [124], mainly because TM proteins are 
difficult to crystallize. The G-protein-coupled receptors 
(GPCRs) constitute the largest family of TM proteins and 
make up roughly 3% of genes in the human genome (over 
800 genes encode a GPCR according to human genome 
research data) [125]. GPCRs can be divided into six classes 
with no shared sequence homology between classes [126]. 
The Rhodopsin family (also known as class A GPCRs) is the 
largest family and consists of 672 proteins, accounting for 
nearly 85% of the GPCR genes [127]. Over half of the 
GPCRs in class A are predicted to encode olfactory 
receptors, while the remaining receptors are bound with 
known endogenous compounds or are classified as orphan 
receptors [127]. Class A GPCRs are characterized by a small 
extracellular N-terminal domain, a canonical seven 
transmembrane domain, and a long intracellular C-terminal 
domain. 

 Knowledge of the 3D structure of GPCRs gives insight to 
the molecular mechanisms underlying diseases, syndromes 
caused by mutations in these receptors, and structure-based 
drug design. GPCRs are currently the single largest drug 
target family, representing 20-50% of marketed drugs [128]. 
Although structural understanding of GPCRs has benefited 
from a number of recent breakthroughs [129-133], coverage 
of the superfamily’s phylogenetic tree is still incomplete. 
Relatively few high resolution GPCR structures are known 
[134]. Therefore, it is important to build 3D structural 
models of GPCRs. Such models can be achieved via 
homology modeling or new fold methods [135]. In this 
section, we review the application of homology modeling to 
GPCRs, focusing on template selection. 

 The key step in homology modeling is deciding the 
template GPCR structure that will maximize the predicted 
model’s accuracy. Current structural data includes five class 
A GPCRs (rhodopsin, beta-1 adrenergic receptor, beta-2 
adrenergic receptor, adenosine A2A receptor, and CXCR4 
chemokine receptor) (see Table 3) and one class B GPCR 
[136]. The other GPCR families possess no structural 
representatives. The lack of structural data for these classes 
makes them unsuitable for comparative modeling as 
discussed earlier. We therefore focus on homology modeling 
of class A GPCRs. The most studied structures available for 
class A GPCR modeling have been those of bovine 
rhodopsin. Since the year 2000, when the first X-ray 
structure of bovine rhodopsin was solved, an additional 
eighteen rhodopsin structures in different activation states 

have been made available (see Table 3). However, rhodopsin 
is a light activated GPCR and is distant in sequence 
homology to other class A GPCRs. Given that sequence 
similarity has a strong bearing on resulting model accuracy, 
there is a degree of uncertainty in using rhodopsin X-ray 
structures as templates for homology modeling of other 
GPCR targets. Potential complications include target-
template alignment error due to low homology and 
uncertainty of whether other GPCR proteins would adopt the 
same binding site geometry. The many conformations of the 
binding site depend on the nature and function of the ligands. 
Therefore, modeling the conformational changes resulting 
from GPCR activation is a challenging task. Most class A 
GPCR structures were crystallized with inverse agonists or 
antagonists and therefore represent inactive conformations. 
However, the recent publication of rhodopsin and rhodopsin 
bound to a G-protein derived synthetic peptide may represent 
inactivated and activated states, respectively, providing 
important insight to the structural changes associated with 
GPCR activation [137]. Such examples of different 
activation states will facilitate the creation of active and 
inactive GPCR homology models, as it is ideal to use 
templates with similar types of interactions. 

 Despite the uncertainties and difficulties in constructing 
rhodopsin-based GPCR homology models, successful 
outcomes have been reported, particularly in ligand-oriented 
homology modeling [138, 139]. One scenario involved a 
community-wide modeling and docking experiment prior to 
the publication of the human adenosine A2A receptor crystal 
structure [140]. Evaluation and analysis of the resulting 
predictions suggested the importance of using additional 
biochemical insight such as disulphide bridges in the 
extracellular loops. Other reported examples also suggest 
that cautious incorporation of knowledge-based constraints 
(site-direct mutagenesis and ligand binding data) can 
improve the quality of models and ligand docking [139, 
140]. Such sources of information are suitable for inclusion 
through model building by spatial restraints satisfaction. 

 Additional insight to modeling class A GPCRs comes 
from recently published ligand-bound GPCR structures. 
These structures help thaw the frozen picture of proteins in 
this class. Comparative modeling using these different 
templates provides the first opportunity to examine changes 
in the predicted structures and possible consequences. 
Already, comparisons between available structures are being 
studied. The four structures of beta-2 adrenergic receptor 
bound with antagonists or partial inverse agonists are very 
similar to each other [129, 132]. Their overall architecture 
resembles that of rhodopsin, but with changes in the tertiary 
structure and position of helices, as well as a more open 
binding pocket. Because beta-2 and beta-1 adrenergic 
receptors are very closely related, it is not surprising that 
their ligand binding sites are similar, with expected 
differences due to different bound ligands [141]. Recently 
[142], the human beta-2 adrenergic receptor was also solved 
in an agonist-bound active form. Comparison to a crystal 
structure of the inactive state revealed subtle changes in the 
binding pocket. However, these small changes are associated 
with movement and rearrangement of the transmembrane 
helices, similar to those observed in opsin, an active form of 
rhodopsin. This new structure provides further insight into 
the process of agonist binding and activation. Intermediate in 
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similarity to the beta-2 adrenergic receptors and beta-1 
adrenergic receptors is the structure of the A2A adenosine 
receptor in complex with a high-affinity antagonist. This 
structure sheds light on structural divergence as a function of 
sequence divergence. Understanding this relationship is 
crucial because comparative modeling uses sequence 
changes to inform structural changes. 

 Worth et al. performed a systematic analysis of 
sequence-structure relationships for known GPCRs and 
concluded that available structures represented only a subset 
of all possible class A GPCR structural variations [143]. For 
a given GPCR, some structural features may be represented 
in a subset of crystal structures or not at all, suggesting that 
models should be built using multiple templates. Multiple 
template comparative modeling (using all currently available 
GPCR structures) provides an improvement over single 
template modeling, as evaluated by the accuracy of rigid 
protein-flexible ligand docking on these models [143, 144]. 
Yarnitzky et al. also investigated the choice of experimental 
templates [145]. They similarly concluded that multiple 
template or fragment-based modeling could produce better 
models than single template modeling. They also suggested 
that molecular dynamics simulation be used to sample 
structural features not observed in X-ray structures to 
improve refinement. The use of varied template selection has 

also seen success with other comparative modeling 
applications discussed earlier. 

 Despite recent breakthroughs in GPCR structural 
biology, the structures discussed above cover only three of 
the nineteen class A subfamilies. These structures also 
exhibit high conformational similarity in their 
transmembrane regions, indicating more GPCR crystal 
structures in various conformational states are needed to 
resolve GPCR structure-function relationships. In 2009, 
Mobarec et al. investigated the 22 available structures and 
suggested that better templates were required to generate 
models with sufficient accuracy for structure-based drug 
discovery [144]. However, this analysis was based on 
information prior to the 2010 breakthroughs, namely the new 
structures of CXCR4 chemokine receptor bound to two 
different drug-like antagonists [134]. The overall structure of 
CXCR4 has moderate differences from rhodopsin, beta-2 
adrenergic, beta-1 adrenergic, and alpha-2A adrenergic 
receptors in terms of the length of helix V, VI, and VII. 
Compared to rhodopsin and beta-2 adrenergic receptor, the 
binding site in CXCR4 is closer to the extracellular surface 
and is thus larger and more open. The fact that CXCR4’s 
ligand binding site is bound to two structurally dissimilar 
antagonists suggests a degree of structural plasticity to 
GPCR binding sites. This poses a problem to comparative 

Table 2. Resources and Tools for Drug Design 

 

Name URL Ref. 

Databases of Proteins and Ligands 

ChEMBL https://www.ebi.ac.uk/chembl  

DrugBank http://www.drugbank.ca [190] 

PDTD http://www.dddc.ac.cn/pdtd [191] 

PubChem http://pubchem.ncbi.nlm.nih.gov [192] 

sc-PDB http://bioinfo-pharma.u-strasbg.fr/scPDB [193] 

Binding Site Prediction 

3DLigandSite http://www.sbg.bio.ic.ac.uk/~3dligandsite [194] 

MetaPocket http://metapocket.eml.org [195] 

PocketDepth http://proline.physics.iisc.ernet.in/pocketdepth [196] 

Docking Tools 

AutoDock http://autodock.scripps.edu [197] 

FINDSITELHM
 http://cssb.biology.gatech.edu/findsitelhm [198] 

FLIPDock http://flipdock.scripps.edu [199] 

MEDock http://bioinfo.mc.ntu.edu.tw/medock [200] 

PATCHDOCK http://bioinfo3d.cs.tau.ac.il/PatchDock [201] 

SwissDock http://swissdock.vital-it.ch [202] 

Virtual Screening and Drug Design 

ANCHOR http://structure.pitt.edu/anchor [203] 

e-LEA3D http://bioinfo.ipmc.cnrs.fr/lea.html [204] 

PharmMapper http://59.78.96.61/pharmmapper [205] 

SuperPred http://bioinformatics.charite.de/superpred [206] 

SPROUT http://www.simbiosys.ca/sprout [206] 
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modeling as it complicates the sequence-structure relation-
ship and may partially account for the moderate performance 
of existing GPCR templates. Nonetheless, these newly 
solved structures of CXCR4 introduce valuable information 
to GPCR modeling, which is heavily reliant on existing 
structural knowledge of GPCRs. Recently, the GPCRRD 
database (http://zhanglab.ccmb.med.umich.edu/GPCRRD/) 
collecting experimental restraints available from the 
literature has been implemented to assist GPCR structure 
modeling and function annotation [146]. In summary, with 
increasing availability of experimental structures, exciting 
possibilities for advancements in GPCR comparative 
modeling are expected. 

Modeling Protein Kinases 

 Protein kinases are involved in numerous cellular 
processes including cell proliferation, differentiation, 
inflammation, and apoptosis. Abnormal activity has been 
linked to a variety of diseases including cancer, Alzheimer’s, 
and inflammation [147-150]. Regulation of protein kinase 
activity is therefore an important therapeutic strategy. 
Protein kinase is one of the largest enzyme families, 
covering approximately 2% of the human proteome. The 
Protein Kinase Resource (http://pkr.genomics.purdue.edu) 
[151] provides a comprehensive coverage of all kinase-
related data and derived information, including 457 kinase 
structures of which 296 are from human. It has been 
estimated that 518 different human protein kinases exist. 
According to the sequence similarity of their catalytic 
domains, 409 kinases have been grouped into eight major 
kinase families (AGC, CAMK, CK1, CMGC, RGC, STE, 
TK, and TKL) and the remaining ones into the “others” and 
“atypical” groups [152]. Human protein kinases can also be 
classified using various other rules. An alternative and 
simple classification scheme uses substrate preferences to 
divide them into serine/threonine, tyrosine, histidine, and 
aspartic/glutamic kinases. Serine/threonine kinases have 
Enzyme Classification (EC) number 2.7.11.1 while tyrosine 
kinases have EC number 2.7.10.1 or 2.7.10.2. More recently, 
a large-scale analysis of ATP binding sites helped define a 
new classification of protein kinase families based on 
structural similarity [153]. The high sequence and structural 
similarity within the families make unsolved kinases ideal 
targets for comparative modeling and subsequent virtual 
screening. We focus this section on prediction of the two 
largest families, serine/threonine and tyrosine kinases. 

 Kinases phosphorylate substrates through a conserved 
catalytic domain. The N-terminal lobe is composed of -
strands in anti-parallel conformation and one -helix ( C), 

while the C-terminal lobe is composed of multiple -helices 
(see Fig. 4). A large loop between the first and second -
strands in the N-terminal lobe interacts with the phosphate 
groups of ATP. The two lobes are connected by the linker or 
hinge region. Interactions in the interface between the N-
terminal lobe, C-terminal lobe, ATP, and other ligands have 
been previously described [154, 155]. 

 At the interface between the N and C-terminal lobes, 
protein kinases have an activation loop whose 
phosphorylation state determines its activation state. 
Phosphorylated and unphosphorylated loops correspond to 
active and inactive states, respectively. The catalytic site 
undergoes significant structural rearrangement when the 
kinase switches between states (see Fig. 4). This distinction 
is important for comparative modeling because the state of 
the template will affect the state of the modeled target. Upon 
activation, the loop is released, making the binding site 
accessible. The position of the C helix also moves closer to 
the binding site. In the particular case of human CDK2, the 
distance between Lys33 and Asp86 (Fig. 4C) and Asp127 
and Asp145 (Fig. 4B) reduces by ~4 Å each. A complete 
description of structural changes between active and inactive 
conformations and conservation of regions involved in the 
catalytic process across kinase families has been previously 
described [156, 157]. 

 Characterization of the active site has largely focused on 
the active conformation rather than the inactive 
conformation. While knowledge of the active state has 
provided important insight to the design of new compounds, 
a large number of inhibitors bind to the inactive 
conformation of these proteins. It has been observed that 
catalytic domains of dissimilar kinases adopt similar active 
conformations but highly variable inactive conformations 
[158]. This structural plasticity is a significant barrier to the 
use of comparative modeling in virtual screening. This is 
because building inactive kinase models using templates in 
the active state produces models indistinguishable from the 
templates. Template selection is not an issue; rather, 
alternative approaches focused on the prediction of loop 
regions in the catalytic pocket of inactive kinases are needed. 

 Although structure prediction of the inactive state of 
protein kinases is difficult, during recent years, several 
structures predicted by comparative modeling have been 
successfully used for non-virtual and virtual screening [123]. 
The first success came from virtual screening against the G 
protein kinase GRK2. The model was built from a cAPK 
template and tested against a library of 13,000 compounds 
[159]. Results showed that only one of four high scoring 
ligands displayed any inhibition activity against GRK2. 

Table 3. Class A GPCRs with Experimentally Determined 3D Structures 

 

Protein Name PDB Code 

Rhodopsin (opsin) 1f88, 1hzx, 1l9h, 1gzm, 1u19, 2hpy, 2g87, 2i35, 2i36, 2i37, 2j4y, 2ped, 2ziy, 2z73, 3cap, 3c9l, 3c9m, 3dqb 

Adenosine-A2A receptor 3eml 

Beta-1 adrenergic receptor 2vt4 

Beta-2 adrenergic receptor 2rh1, 2r4r, 2r4s, 3d4s, 3nya, 3ny8, 3ny9, 3p0g 

CXCR4 chemokine receptor 3oe0, 3oe5, 3oe6, 3odu 
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Later, a highly potent inhibitor of human CK2 was found 
using a model built from the structure of ANP-bound CK2 
from Zea mays [116]. A docking procedure selected a subset 
of ~1,600 high scoring ligands from an initial library of 
400,000 compounds. After visual inspection, this was 
reduced to twelve potential inhibitors, one of which inhibited 
human CK2 in experimental assays. In this particular case, 
sequence identity between target and template was 92%, 
suggesting a high quality model. Crystallographic 
experiments confirmed this, showing ATP binding site Root 
Mean Square Deviation (RMSD) of 0.64 Å between 
predicted and experimental structures. Additionally, in a 
2005 paper [160], authors described the screening of ~6,500 
compounds using a model of JAK2 created from a FGFR1 
template. Extensive experimental tests demonstrated that one 
of seven high scoring compounds inhibited JAK2 tyrosine 
autophosphorylation. 

 In the cases presented, template selection took into 
account the nature of the co-crystallized ligand. This is 
motivated by the link between ligand structure and loop 
conformation, meaning loop conformation and the desired 
interactions are better represented when a similar compound 
is bound. This suggests that the best template for virtual 
screening has a similar sequence to the target as well as a 
similar bound ligand to the compounds being tested, as 
discussed earlier. Although an exhaustive study of the effect 
of ligation state on docking efficiency to the template has not 
been performed, it is evident that ligation state affects the 
structure of the predicted model [161]. This is also 
demonstrated in a recent large-scale structure modeling and 
virtual screening study of the entire human kinome [162]. 

Sequence profile-based alignments with ligand-bound and 
ligand-free templates were used to predict the structures of 
all human kinases and their ATP-binding sites. Virtually 
screening of more than two million compounds led to 
docking refinement of five million ligand-kinase complexes 
that were evaluated using different scoring functions. 
Modeling accuracy was validated by experimental data and 
all predicted structures, ligand conformations, and ligand 
ranking lists were made available online 
(http://cssb.biology.gatech.edu/kinomelhm/). The authors 
tested their structural predictions by comparing them against 
the experimental structures of 57 ligand-bound (holo) and 48 
ligand-free (apo) human kinases. The predicted structures 
gave average RMSDs of 2.75 Å and 3.13 Å, respectively. 
The lower RMSD obtained for holo versus apo 
conformations reflects the fact that a larger number of 
templates used were in a ligand-bound active state. Similar 
analysis on the kinase binding sites showed average RMSDs 
of 1.27 Å and 2.36 Å for C  and all atoms, respectively. This 
difference confirms that modeling of side chain atoms still 
needs further improvement. Nevertheless, the results are 
compatible with the estimated binding site plasticity that 
allows two protein kinases in the same family to bind the 
same class of ligands. 

FUTURE OUTLOOK 

 During the last decade, comparative modeling techniques 
have become routinely used in many practical applications. 
There has been continuous improvement to the overall 
accuracy of predicted models due to better methods for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Structural comparison of human CDK2 in active (PDB: 1FIN) and inactive states (PDB: 1HCL). 
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template selection, sequence alignment, and evaluation. 
Small advances have also been made in model refinement. 
Many applications, in particular virtual screening and drug 
design, are critically dependent on the accuracy achieved by 
comparative modeling methods. We have presented 
successful examples on both GPCRs and protein kinases. 
However, the speed at which sequence data is produced and 
the large number of models that we can obtain from them 
will require fast and accurate computational tools to evaluate 
the quality of the predicted structures. Additionally, 
continued computational speedups and more accurate 
scoring functions will be required to achieve an exhaustive 
sampling of binding site conformational space and selection 
of the best target-ligand complexes. 

 Another important challenge will be the development of 
high quality repositories for experimental and computational 
data. In the specific case of virtual screening and drug 
design, we believe that a better integration of different 
sources of data is needed. These include broad and 
continuously updated databases that collect the structures of 
possible drug targets and compounds as well as available 
binding assays. This will facilitate characterization of ligand 
binding sites and testing of new data-driven hypotheses. We 
also expect increased development of protein family specific 
databases, where researchers interested in a particular class 
of proteins can deposit and retrieve highly curated data. In 
this direction are the SARfari databases that integrate 
chemogenomics information for GPCRs and kinases [163]. 
These portals contain sequence, alignment, structure, and 
screening data in a user-friendly web interface that allows 
exploration across public and private data. Computational 
data from modeling and docking simulations should be 
similarly collected and made available to the scientific 
community. Most important is reporting all the information 
needed to reproduce the results. A centralized database 
collecting predicted structures from comparative modeling in 
concert with virtual and non-virtual screening data will be 
particularly useful to restrict the search of new drugs to a 
smaller set of plausible compounds. Although the 
improvement of comparative modeling methods will be a 
key factor in obtaining high quality predictions, the 
collection of well-curated and integrated data will allow 
resource optimization, making the selection of new potential 
drug target interactions more efficient. 
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