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Supplementary Methods 
 
1. TCGA data collection and filtering 
We collected TGGA whole exome sequencing data for three tumor types: colon, lung and prostate 

adenocarcinoma (COAD, LUAD and PRAD, respectively). The direct links to this restricted datasets available 

upon Data Use Certification Agreement are provided in the Supplementary Files. To avoid variability introduced 

by the use of multiple sequencing platforms, we used only whole-exome sequencing data obtained by Illumina 

platform, which represents the state of the art in the field and has lowest rate of false positives in the detection of 

SNVs (Quail, et al., 2012). For each tumor type, we analyzed the data extracted from the Variant Calling Format 

(VCF) files containing both whole-exome data from normal and tumor cells from the same patient.  

Since the VCF files from Baylor College of Medicine (COAD) and those from Broad Institute (LUAD and PRAD) 

have been obtained with two different variant calling procedures, we adopted two alternative strategies to select 

germline and somatic variants, which are both important in our analysis. For the COAD samples, we used all the 

nsSNVs that pass Baylor College of Medicine filtering procedure and have the word “PASS” in the FILTER field 

of the VCF file. For the LUAD and PRAD samples, the germline variants included in the VCF files did not pass 

the MuTect (v.1) filter (Cibulskis, et al., 2013) used by Broad. To recover the germline variants in these samples, 

we filtered the VCF files selecting all the nsSNVs with average base quality (BQ) for reads supporting alternative 

alleles higher then 30 and fractions of reads (FA) higher than 0.05. Using this procedure, all the variants in tumor 

samples could be recovered including both the germline and somatic variants.  

 

2. ContastRank benchmarking 
2.1 Evaluation of the gene prioritization score 

To test the performance of ContastRank in prioritizing cancer-causing genes we compared its performance 

against MutSigCV (Lawrence, et al., 2013). The lack of well-established “gold standard” set is one of the main 

issues in the evaluation of cancer-causing gene prioritization methods. To partially address this issue we assume 

as benchmark set three manually curated lists of cancer-associated genes. The largest list referred as  

“Bushman” is the union of 8 collections of cancer-related genes. This list, composed by 2,125 genes, is available 

online at http://www.bushmanlab.org/assets/doc/allonco_20130923.tsv (Bushman, 2013). The second is the 

cancer census gene list indicated as “COSMIC Census” downloaded from COSMIC database (Forbes, et al., 

2011) website (http://cancer.sanger.ac.uk). This list contains 522 genes which mutations have been implicated in 

cancer. The latter list namely “Vogelstein” is smaller a more specific list of 125 driver genes affected by subtle 

mutations provided in the table S2A of the supplementary materials of a recent publication (Vogelstein, et al., 

2013). This list is composed by 71 tumor suppressor genes and 54 oncogenes extracted from genome-wide 

sequencing studies of 3,284 tumors. Assuming these lists of genes as “true positive” and all the remaining genes 

as true negative we can calculate the true and false positive rates (defined in the following section) at different p-

value cutoff. With this procedure we are able to estimate the ability of our method to correctly rank cancer-related 

genes among those with a p-value lower than a given cutoff. Accordingly, we were able to draw a receiver 

operating characteristic (ROC) curve and calculate the associate area under the curve (AUC) defined in the 

following section. Therefore we compared the performance of ContastRank and MutSigCV comparing the AUC 

of the obtained by the 2 methods using the Bushman, Census and Vogelstein as reference sets of cancer-



related genes. The MutSigCV prioritization lists of cancer-causing genes for colon, lung and prostate 

adenocarcinomas have been calculated providing in input all types of somatic mutations found in the exonic 

regions in their relative cohorts. The list of somatic mutations has been obtained by removing from the genomic 

variants in tumor sample the variations detected in the associated normal sample. Using the output of MutSigCV 

we ranked the cancer-related genes according to their p-value. The MutSigCV cancer-related gene lists for the 

three tumor types are provided as supplementary files.  

 

2.2 Cross-validation procedures 

We tested the performance of ContrastRank by implementing a simple binary classifier based on the score 

threshold to discriminate between normal and tumor samples. To avoid overfitting, we used a 2-fold cross-

validation procedure randomly splitting each dataset (COAD, LUAD and PRAD) in two subsets, calculating the 

scores associated to the PIGs (sg) in one subset and scoring the samples on the second subset. Reversing this 

process we obtain a score for all the samples in our dataset. Finally, we select the prediction threshold that 

maximizes the value of the Matthews correlation coefficient (Supplementary Methods 3). We repeated this 

procedure 10 times and calculated the average accuracy measures for each cancer type. This cross-validation 

procedure (CV Identifier) has been performed keeping the normal and tumor samples with the same identifier in 

the same subset. A second cross-validation procedure has been used to estimate the minimum level of accuracy 

in the case the putative defective rates (PDRs) of the putative impaired genes (PIGs) were extracted from an 

unrelated subset of normal samples. Accordingly, we implemented a 2-fold cross-validation test (CV Unseen) 

where the matching pairs of samples are divided into two groups and the normal samples are swapped between 

the groups. Thus, the normal samples in the first subset are used to calculate the PDRs to score the tumor 

samples in the second subset, and conversely, the normal samples in the second subset are used for scoring 

the tumor samples in the first subset. The CV Unseen test has been used to estimate the performance of 

ContrastRank when matching pairs of normal and tumor samples with same identifier are in disjoint sets. 

 

2.3 Discriminating between normal and tumor samples 

To evaluate the quality of our prioritization method (ContrastRank) we compared the performances using three 

alternative approaches: 

1. ContrastRank, which uses the top ranking genes, sorted by the score described in section 2.3 of the main 

manuscript. 

2. ContrastLow based on the lowest ranking genes in the previous list. 

3. ContrastDiff, which prioritizes the genes using the difference between their PDRs in tumor and normal 

TCGA samples. 

The standard ContrastRank approach relies on PIGs with highest score. Thus, given a list M putative impaired 

genes (PIGs) G={g1,g2,…..,gM} with at least one putative deleterious variant (PDV) the total exome score for 

ContrastRank (SCR) is calculated summing all the PIG score sg as follows: 

  where   𝐻 𝑡 =   
0, 𝑠!! ≤ 𝑡
1, 𝑠!! > 𝑡   [1] 

where t is an arbitrary cutoff.  

 

SCR =
1
M

sgiH (t)
i=1

M

∑



ContastLow score (SCL) is the sum of all the PIG scores sg below an arbitrary cutoff t 

  where   𝐻 𝑡 =   
0, 𝑠!! > 𝑡
1, 𝑠!! ≤ 𝑡   [2] 

ContrastLow provides an estimation of the lower bound performance obtained removing the highest ranking 

putative impaired genes (PIGs).  

 

In ContrastDiff method, the total score SCD is given by the Eq.1 where the sg is calculated as follows: 

            [4] 

where τg and πg are the putative defective rates (see section 2.1 in main manuscript) calculated over the subsets 

of tumor and normal samples respectively. Comparing the performance of ContrastDiff with ContrastRank we 

evaluate the improvement resulting from the use of our prioritization score based on the binomial distribution. In 

the table 1 of the main manuscript the sg cutoff has been arbitrarily set to 3 that corresponds a probability of 

0.001. The performances of ContrastRank and ContastLow reported in Supplementary Tables S5, S6 and S7 

have been selected in using a decreasing cutoff t that allows us to consider an increasing number of highest 

scored PIGs in the calculation of ContrastRank score (Eq. 2) and decreasing number of highest scored PIGs in 

the calculation of ContrastLow score (Eq. 3). 

 

2.4 Discriminating different tumor samples 

In this work we also evaluated the ability of our scoring system to discriminate between one type of 

adenocarcinoma from the others. For this purpose, we created randomly sampled sets composed by 50% tumor 

samples under study and the remaining 50% equally divided between the other two tumor types. For example, to 

estimate the ability of ContrastRank to discriminate colon adenocarcinoma from lung and prostate 

adenocarcinoma samples we build a dataset composed by 50% COAD, 25% LUAD and 25% PRAD samples.  

To discriminate between different tumor types, we calculated the ContastRank score for the cancer type under 

study and for the mixture of the remaining tumor types. Thus, the final score for each PIG is the difference 

between its score for the tumor under study and the mixture of remaining tumors. Both scores are obtained 

comparing the gene putative defective rates (PDRs) in subset of tumors samples and the background PDR.  

With this procedure, important genes in the cancer type under study will have high positive value and important 

genes in other tumor types will have negative scores. Therefore, the total cancer exome score (ST) for this test is 

calculated as follows 

ST =
1
M

Δsgi
i=1

M

∑ H *(t)   where  𝐻∗ 𝑡 =
0,          |Δ𝑠!!| ≤ 𝑡
1,          |Δ𝑠!!| > 𝑡   [5] 

and Δsg is the difference between the PIG scores calculated on the subset of tumor samples under study and the 

mixture of samples from other tumors. 

This test is again performed using a 2-fold cross-validation procedure. Since both high positive and 

negative score genes are import to discriminate between tumor types, for this task we calculated the 

performance of ContrastRank using a list 2j which is composed by the first j genes with high positive scores and 

the last j genes with high negative scores. 

 

SCL =
1
M

sgi H (t)
i=1

M

∑

sg = τ g −π g



3. Measures of Performance 
In all measures of performance (assuming that positives indicate tumor and negatives indicate either normal or 

an alternative tumor type), TP (true positives) are correctly predicted tumor genotypes, TN (true negatives) are 

correctly normal genotypes, FP (false positives) normal genotypes predicted as tumor and FN (false negatives) 

are tumor genotypes predicted to be normal.  

Predictor performance was evaluated using the following metrics: positive and negative predicted values 

respectively PPV, NPV), true positive and negative rates (respectively TPR, TNR), and overall accuracy (Q2; Eq. 

5) 

PPV =
TP

TP+FP
   TPR = TP

TP+FN

NPV =
TN

TN +FN
   TNR = TN

TN +FP

Q2 =
TP+TN

TP+FP+TN +FN

        [6] 

We also computed the Matthew’s correlation coefficient C (Eq. 6) as: 

C = TP×TN −FP×FN
(TP+FP)(TP+FN )(TN +FP)(TN +FN )       [7] 

We also calculated the area under the receiver operating characteristic (ROC) curve (AUC). This is calculated by 

plotting the True Positive Rate as a function of the False Positive Rate (1-TNR) at different score thresholds of 

predicting a genotypes as tumor. All the measures of performance have been calculated using ROCR package 

(Sing, et al., 2005).  

  



Supplementary Figures 
 

 

Supplementary Fig. S1. Distributions of pathogenic (red) and non-pathogenic (red) variants in dbSNP 
(Sherry, et al., 2001), for the subsets of nsSNVs and other SNP types (panel A). Distributions of pathogenic 
(red) and non-pathogenic (blue) nsSNVs for the subsets of rare (MAF<1%) and common nsSNVs (panel B). 
The Minor Allele Frequency (MAF) refers to the frequency at which the least common allele occurs in the 
population. 
 
	  

	   	  



	  

Supplementary Fig. 2. Distribution of nsSNVs in normal (blue) and tumor (red) samples for COAD LUAD and 
PRAD (Panels B, D and F). Same distributions for putative deleterious variants (PDV= nsSNV with MAF<0.5%) 
for COAD LUAD and PRAD (Panels A, C and E). 

	    



	  

  

Supplementary Fig. S3. Flow chart of the procedure for the selection of putative deleterious variants (PDVs) 
in COAD LUAD and PRAD normal and tumor samples. MAF=Minor Allele Frequency	  

  



 
 
Supplementary Fig. S4. Distribution of putative defective rates (PDRs) in 1000 Genomes (yellow), TCGA 
normal (blue) and tumor (red) for colon, lung and prostate adenocarcinomas (COAD, LUAD and PRAD 
respectively).  

 
 
 
 
 
 
 
 

 
 
Supplementary Fig. S5. Performances of ContastRank (CR solid lines) and MutSigCV (MS dotted lines) in 
the prioritization of cancer-related genes for colon lung and prostate adenocarcinomas (respectively COAD, 
LUAD and PRAD). The ROC curves have been calculated using three lists of cancer-related genes from the 
BushmanLab website (Bushman, in black), COSMIC cancer census (Census in blue) and a recent publication 
from Vogelstein et al. (Vogelstein in red).  More information about the 3 lists is provided Supplementary 
Methods 2.1. The values of the AUCs are reported in Supplementary Table S2. 
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Supplementary Fig. S6. Average accuracy measures for ContrastRank (A), ContrastLow (B) and 
ContrastDiff (C) methods in the classification of COAD tumor and normal samples. In panel A and C the each 
point represent the performance of ContrastRank and ContrastDiff as a function of the number of genes use 
in the to calculate the global score assigned to each genome. In panel B accuracy of ContrastRank as a 
function of the number of top scored genes removed from the whole set of putative impaired genes. 
Q2=overall accuracy, C= Matthews correlation and AUC= area under the (ROC) curve.  
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Fig. S7. Average accuracy measures for ContrastRank (A), ContrastLow (B) and 
ContrastDiff (C) methods in the classification of LUAD tumor and normal samples. In panel A and C the each 
point represent the performance of ContrastRank and ContrastDiff as a function of the number of genes used 
to calculate the global score assigned to each genome. In panel B accuracy of ContrastRank as a function of 
the number of top scored genes removed from the whole set of putative impaired genes. Q2=overall 
accuracy, C= Matthews correlation and AUC= area under the (ROC) curve.	  
  



 
 

Supplementary Fig. S8. Average accuracy measures for ContrastRank (A), ContrastLow (B) and 
ContrastDiff (C) methods in the classification of PRAD tumor and normal samples. In panel A and C the each 
point represent the performance of ContrastRank and ContrastDiff as a function of the number of genes used 
to calculate the global score assigned to each genome. In panel B accuracy of ContrastRank as a function of 
the number of top scored genes removed from the whole set of putative impaired genes. Q2=overall 
accuracy, C= Matthews correlation and AUC= area under the (ROC) curve. 
	  
	  
	  
	  
	  
	  
	  

 
 
Supplementary Fig. S9. Average accuracy measures for discriminating each type of tumor samples (COAD, 
LUAD and PRAD). In all the panels each point represent the performance of our method based on the 
difference of ContrastRank scores as a function of the number of genes used to calculate the global score 
assigned to each genome. In this case we consider and even number of highly positive and low negative 
scored genes. Q2=overall accuracy, C= Matthews correlation and AUC= area under the (ROC) curve. 
	  

 
	    



Supplementary Tables 
 
 
Supplementary Table S1 

 

Tumor Samples NVAR NPDV NGEN NPIG 
COAD 220 9067/9362 996/1276 5057/5198 643/880 
LUAD 625 8225/8656 1202/1599 4733/4930 751/1041 
PRAD 309 8782/9019 1321/1540 4967/5063 819/953 
1000G 1092 10559 318 5829 305 

 
Samples = total pairs of normal/tumor samples. NVAR= average number of nsSNVs in normal/tumor samples, 
NPDV= number of putative deleterious variants (PDVs) with allele frequency <0.5%. NGEN = number of genes 
with nsSNVs in normal/tumor samples. NPIG = number of putative impaired genes (PIGs) with at least one 
PDV. COAD = Colon Adenocarcinoma, LUAD = Lung Adenocarcinoma, PRAD = Prostate Adenocarcinoma 
and 1000G= genotypes from 1000 Genomes Consortium. 
 
 
 
 
 
 
 
 
Supplementary Table S2 
 

Method Bushman COSMIC Census Vogelstein 
 COAD  LUAD  PRAD COAD LUAD PRAD COAD  LUAD PRAD 

MutSigCV 0.49 0.60 0.56 0.53 0.49 0.53 0.60 0.56 0.60 

ContastRank 0.55 0.75 0.71 0.62 0.60 0.58 0.75 0.71 0.64 
 
Performances of ContastRank and MutSigCV in the prioritization of cancer-related genes for colon lung and 
prostate adenocarcinomas (respectively COAD, LUAD and PRAD). The values represents the AUCs of the 
ROCs in Supplementary Figure S5 that have been calculated using Bushman, COSMIC Census and 
Vogelstein lists of cancer-related genes respectively from the BushmanLab website (Bushman, 2013), 
COSMIC database (Forbes, et al., 2011) and a recent publication from Vogelstein and colleagues (Vogelstein, 
et al., 2013). More information about the lists and the procedure used for this test are available in 
Supplementary Methods 2.1.   
 
 
 
 
 
 
 

  



Supplementary Table S3 
 

Tumor CV Q2 PPV TPR NPV TNR C AUC 
COAD Identifier 0.92 0.97 0.86 0.87 0.97 0.84 0.94 

 Unseen 0.77 0.92 0.60 0.72 0.95 0.58 0.78 
LUAD Identifier 0.97 0.97 0.96 0.96 0.97 0.93 0.99 

 Unseen 0.95 0.96 0.94 0.94 0.96 0.90 0.98 
PRAD Identifier 0.91 0.92 0.91 0.91 0.92 0.83 0.97 

 Unseen 0.82 0.85 0.77 0.80 0.86 0.64 0.88 
 
Performance of ContrastRank in discriminating normal from tumor samples of colon, lung and prostate 
adenocarcinomas (respectively COAD, LUAD and PRAD) using putative impaired genes (PIGs) with score 
higher than 3. The results have been obtained using two different 2-fold cross-validation procedures (CV 
Identifier and CV Unseen) described in Supplementary Methods 2.2. The following accuracy measures are 
defied in Supplementary Methods 3. Q2=Overall accuracy, PPV and NPV=Positive and Negative Predicted 
Values, TPR and TNR=True Positive and Negative Rates. MCC=Matthew’s correlation, AUC=area under the 
(ROC) curve. 
 
 
 
 
 
Supplementary Table S4 

 
 Bushman COSMIC Census Vogelstein 

Tumor High  Low  p High  Low  p High  Low  p 
COAD 37/102 1,748/15,120 7*10-8 20/119 397/16,471 2*10-10 15/124 107/16,761 7*10-14 
LUAD 47/272 1,868/16,024 0.01 20/299 422/17,470 1*10-4 16/303 109/17,783 6*10-10 
PRAD 18/79 1,754/14,915 0.01 8/89 405/16,264 3*10-3 5/92 109/16,560 5*10-4 

 
High and Low represent the number of high (>3) and low (≤3) scored putative impaired genes. For each High 
and Low columns we reported the number of gene found in a manually annotated cancer-related gene list 
versus the remaining number of genes included in ContastRank list. The curated gene lists included in our 
test are: i) the Bushman list (Bushman, 2013); ii) the COSMIC Census list of cancer genes in COSMIC 
database (Forbes, et al., 2011) ; iii) the Vogelstein’s list of driver genes affected by subtle mutations provided 
in Table S2A of a recently published paper (Vogelstein, et al., 2013). The p-value (p) is calculated comparing 
the distribution of high and low scored genes in manually curated and ContrastRank lists using the Fisher’s 
exact test. 

 

 

 

  



Supplementary Files 
 

ContrastRank scores for COAD LUAD and PRAD are listed respectively in coad_normal_scores.txt, 

luad_normal_scores.txt and prad_normal_scores.txt files. 

 

MutSigCV scores for COAD, LUAD and PRAD are listed respectively in coad_mutsigcv_scores.txt, 

luad_mutsigcv_scores.txt and prad_mutsigcv_scores.txt files. 

 
ContrastRank scores used to discriminate between one tumor type and the remaining two are listed 

respectively in coad_mix_scores.txt, luad_mix_scores.txt and prad_mix_scores.txt files 

 
These files are available online at http://snps.biofold.org/data/supfiles.tar.gz 

 

External Link of data used in this work 

Direct link to restricted TCGA datasets used in this work. 

 

COAD:https://tcga-data-

secure.nci.nih.gov/tcgafiles/tcga4yeo/tumor/coad/gsc/hgsc.bcm.edu/illuminaga_dnaseq_cont/mutation

s_protected/hgsc.bcm.edu_COAD.IlluminaGA_DNASeq_Cont.Level_2.1.5.0.tar.gz 

 
LUAD:https://tcga-data-

secure.nci.nih.gov/tcgafiles/tcga4yeo/tumor/luad/gsc/broad.mit.edu/illuminaga_dnaseq_cont/mutations

_protected/broad.mit.edu_LUAD.IlluminaGA_DNASeq_Cont.Level_2.0.4.0.tar.gz 

 
PRAD:https://tcga-data-

secure.nci.nih.gov/tcgafiles/tcga4yeo/tumor/prad/gsc/broad.mit.edu/illuminaga_dnaseq_cont_curated/

mutations_protected/broad.mit.edu_PRAD.IlluminaGA_DNASeq_Cont_curated.Level_2.1.4.0.tar.gz.m

d5 
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