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ABSTRACT

Motivation: Widespread availability of low-cost, full genome
sequencing will introduce new challenges for bioinformatics.
Results: This review outlines recent developments in sequencing
technologies and genome analysis methods for application in
personalized medicine. New methods are needed in four areas to
realize the potential of personalized medicine: (i) processing large-
scale robust genomic data; (ii) interpreting the functional effect and
the impact of genomic variation; (iii) integrating systems data to relate
complex genetic interactions with phenotypes; and (iv) translating
these discoveries into medical practice.
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Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
We are on the verge of the genomic era: doctors and patients
will have access to genetic data to customize medical treatment.
Consumers can already get 500 000–1 000 000 variant markers
analyzed with associated trait information (Hindorff et al., 2009),
and soon full genome sequencing will cost less than $1000
(Drmanac et al., 2010). One group has performed a complete
clinical assessment of a patient using a personal genome (Ashley
et al., 2010), and the 1000 Genomes Project is sequencing 1000
individuals (1000 Genomes Project Consortium et al., 2010). In
the coming years, the bioinformatics world will be inundated with
individual genomic data. This flood of data introduces significant
challenges that the bioinformatics community needs to address.
This review outlines the developments that led to these challenges,
the previous work that can address them and the need for new
methods to address them. The challenges fall into four main areas:
(i) processing large-scale robust genomic data; (ii) interpreting the
functional impacts of genomic variation; (iii) integrating data to
relate complex interactions with phenotypes; and (iv) translating
these discoveries into medical practices.

∗To whom correspondence should be addressed.

Fig. 1. Personalized medicine. Personal genomics connect genotype to
phenotype and provide insight into disease. Pharmacogenomics connect
connects genotype to patient-specific treatment. Traditional medicine defines
the pathologic states and clinical observations to evaluate and adjust
treatments.

2 THE PROMISE OF PERSONALIZED MEDICINE
In the last decade, molecular science has made many advances
to benefit medicine, including the Human Genome project,
International HapMap project and genome wide association
studies (GWASs) (International HapMap Consortium, 2005). Single
nucleotide polymorphisms (SNPs) are now recognized as the main
cause of human genetic variability and are already a valuable
resource for mapping complex genetic traits (Collins et al., 1997).
Thousands of DNA variants have been identified that are associated
with diseases and traits (Hindorff et al., 2009). By combining
these genetic associations with phenotypes and drug response,
personalized medicine will tailor treatments to the patients’ specific
genotype (Fig. 1). Although whole genome sequences are not used
in regular practice today (McGuire and Burke, 2008), there are
already many examples of personalized medicine in current practice.
Chemotherapy medications such as trastuzumab and imatinib target
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specific cancers (Gambacorti-Passerini, 2008; Hudis, 2007), a
targeted pharmacogenetic dosing algorithm is used for warfarin
(International Warfarin Pharmacogenetics Consortium et al., 2009;
Sagreiya et al., 2010) and the incidence of adverse events is reduced
by checking for susceptible genotypes for drugs like abacavir,
carbamazepine and clozapine (Dettling et al., 2007; Ferrell and
McLeod, 2008; Hetherington et al., 2002).

Despite all of these advances, many challenges need to be
addressed to make personalized medicine a reality. Today, a patient’s
genetics are consulted only for a few diagnoses and treatment
plans and only in certain medical centers. Even if doctors had
access to their patients’ genomes today, only a small percentage
of the genome could even be used (Yngvadottir et al., 2009). Many
of the annotations come from association studies, which tend to
identify variants with small effect sizes and have limited applications
for healthcare (Moore et al., 2010). By addressing the challenges
outlined in this review, bioinformatics will create the tools to tailor
medical care to each individual genome, rather than rely on blanket
therapies (Ginsburg and Willard, 2009).

3 CHALLENGE 1: PROCESSING LARGE-SCALE
ROBUST GENOMIC DATA

Sequencing technologies are becoming affordable and are replacing
the microarray-based genotyping methods, which were limited to
interrogating regions of known variation (Ng et al., 2010). Now
a whole genome or a few dozen exomes can be sequenced in <2
weeks with an error rate of ∼1 error per 100 kb (Drmanac et al.,
2010). Even such low error rates can lead to a significant number
of errors; a 3 GB human genome would have ∼30 000 erroneous
variant calls.

The error rate from these technologies is a source of significant
challenges in applications, including discovering novel variants.
Each newly sequenced genome is expected to have between 100 000
and 300 000 previously undiscovered SNPs and <1000 somatic
mutations per generation (1000 Genomes Project Consortium et al.,
2010). The number of expected mutations may decrease as new
genomes are sequenced; however, such a high number of errors
turns variant discovery into a ‘needle in a haystack’ problem.
Whenever a novel variant is identified, it will still have to be
verified due to this false positive rate. In addition, other classes
of variation, such as short insertion–deletion variants (indels), as
well as copy number variants (CNVs) and structural variants (SVs),
are even more difficult to detect using high-throughput sequencing.
New algorithms for calling indels, CNVs and SVs from read data
will be crucial in detecting these types of variations for clinical
applications.

Even high-quality sequence reads must be placed into their
genomic context to identify variants, which is an active area
of research since, for example, different mapping and alignment
algorithms often yield different results. Because de novo assembly
(Shendure and Ji, 2008) is slow and complicated by repetitive
elements, sequences are usually mapped to a genomic reference
sequence instead. Algorithms such as BLAST (Altschul et al.,
1990) or Smith–Waterman (Smith and Waterman, 1981) have been
traditionally used, but their execution speed depends on the genome
size. While individual queries may only take seconds per CPU,
aligning 100 million of them would require more than 3 CPU years.

As a result, new algorithms are being developed to address this
problem. BLAT is similar to standard sequence alignment, but also
incorporates an indexed version of the genome instead of linear
search (Kent, 2002). Many packages like BLAT have been optimized
for the alignment of short reads by using hashing, prefix and suffix
trees or other heuristics (Li and Homer, 2010). BWA, used for
the 1000 Genomes Project, is highly accurate with <0.1% errors
for simulated data and can map ∼7 GB of short reads per CPU
day (Li and Durbin, 2009; Li and Homer, 2010). To achieve the
standard 30X coverage would still require 13 CPU days and so
is ideally performed on a cluster or by using a cloud computing
environment (Dudley and Butte, 2010), which can be used for
efficient computational analysis of secure clinical data.

A remaining challenge for short read assemblers is reference
sequence bias: reads that more closely resemble the reference
sequence are more likely to successfully map as compared with
reads that contain valid mismatches. Proper care must be taken
to avoid errors in these alignments, and is discussed in a recent
review (Pool et al., 2010). There is an inherent trade-off in allowing
mismatches: the program must allow for mismatches without
resulting in false alignments. Reference sequence bias is important
when making heterozygous SNP calls and when analyzing allele-
specific expression using RNA-Seq data (Degner et al., 2009). The
problem is exacerbated with longer reads: allowing for one mismatch
per read is acceptable for 35 bp reads, but insufficient for 100 bp
reads.

When the diploid sequence is known, reference sequence bias
can be avoided by mapping the reads to both strands, as can
be done when mapping RNA-Seq reads to a sequenced genome.
An alternative approach is to use ambiguous base codes to avoid
the requirement of storing redundant sequences, such as with
MOSAIK, developed by the Marth Lab (Michael Stromberg, Boston
University). Using this approach, a C/T SNP can be represented as
Y. This representation increases the storage requirements: because
the genome is often stored in a hashed data structure, the number of
keys and mappings increases to accommodate the new codes.

Another challenge is developing new methods for novel SNP
discovery: while the calling of common variants can be aided by
their presence in a database such as dbSNP, accurate detection of rare
and novel variants will require increased confidence in the SNP call.
De novo alignment methods require too much computation time to be
feasible and reference alignment methods are biased. The challenge
is to develop new algorithms that are computationally tractable and
still avoid reference sequence bias.

Finally, there is a pressing need to improve quality control metrics.
We can judge mapping and SNP call qualities by the ratio of
transition (purine/purine or pyrimidine/pyrimidine) substitutions to
transversion (purine/pyrimidine) substitutions. These ratios were
established during previous sequencing efforts and we expect to
see similar ratios (∼2–2.1) for newly human genomes (Zhang and
Gerstein, 2003). When working with genomes from families, we
can estimate errors with the Mendelian inheritance error (MIE) rate:
impossible combinations of inheritance most likely represent errors
(Ewen et al., 2000). Transition/transversion ratio and MIE metrics
are useful for measuring the quality of a dataset and are used by most
large projects, such as the 1000 Genomes project (1000 Genomes
Project Consortium et al., 2010). At the individual SNP level, we
must rely on relative quality scores, so in order to confidently
identify novel variants we must be verify them with an independent
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Fig. 2. Number of validated human SNPs in dbSNP overtime.

method. Variants can be validated with targeted resequencing or
genotyping arrays. Alternatively, whole genome resequencing by an
orthogonal sequencing platform can be performed, but is expensive
and time consuming.

4 CHALLENGE 2: INTERPRETATION OF THE
FUNCTIONAL EFFECT AND THE IMPACT OF
GENOMIC VARIATION

After genomic data has been processed, the functional effect
and the impact of the genetic variations must be analyzed.
Genome-wide association studies (GWASs) have been used to
assess the statistical associations of SNPs with many important
common diseases (WTCC Consortium, 2007). These methods are
providing new insights, but only a limited number of variants have
been characterized, and understanding the functional relationship
between associated variants and phenotypic traits has been difficult
(Frazer et al., 2009).

In the strictest definition, a SNP is a single nucleotide variant
where the allele frequency in the human population is higher then
1%. In this review, we use the term SNP in a broader sense to
also include rare variants that occur in a smaller fraction of the
population. Important issues for predicting the impact of SNPs are
data management, retrieval and quality control. During the last few
years, the number of known SNPs has increased at an exponential
rate (Fig. 2). The dbSNP database (Sherry et al., 2001) is the most
comprehensive repository of SNPs data from different organisms.
At the time of writing this review, the database contains about
20 million validated human SNPs (Build 132, September 2010).
The Human Gene Mutation Database (HGMD) is a comprehensive
collection of germline mutations in genes that are associated with
human inherited diseases. The free version for academic and non-
profit users contains more than 76 000 mutations from ∼2900 genes.

The SwissVar is a database of manually annotated missense SNPs
(mSNPs) and contains 56 000 mSNPs from >11 000 genes.

Another important resource for SNP data is the Online Mendelian
Inheritance in Man (OMIM) database (Amberger et al., 2009)
of human SNPs and their associations with Mendelian disorders.
The PharmGKB database contains manually curated associations
between genes and drugs and a catalog of genetic variations with
known impact on drug response, including >40 very important
pharmacogenes (VIPs) and over 3400 annotated drug–response
variants. The Catalogue of Somatic Mutations in Cancer (COSMIC)
at the Sanger Institute stores ∼25 000 unique mutations somatic
mutation data related to human cancer extracted from the literature.
A selection of the most significant SNP data sources is reported in
Supplementary Table S1.

In the last few years, several computational methods have been
developed to predict deleterious missense SNPs (Karchin, 2009;
Mooney, 2005; Tavtigian et al., 2008). These methods have used
different approaches such as empirical rules (Ng and Henikoff,
2003; Ramensky et al., 2002), Hidden Markov Models (HMMs)
(Thomas and Kejariwal, 2004), Neural Networks (Bromberg
et al., 2008; Ferrer-Costa et al., 2005), Decision Trees (Dobson
et al., 2006; Krishnan and Westhead, 2003), Random Forests
(Bao and Cui, 2005; Carter et al., 2009; Kaminker et al., 2007;
Li et al., 2009; Wainreb et al., 2010) and Support Vector Machines
(Calabrese et al., 2009; Capriotti et al., 2006, 2008; Karchin et al.,
2005; Yue and Moult, 2006).

The prediction algorithms input features generally include amino
acid sequence, protein structure and evolutionary information. The
amino acid sequence features rely on the physicochemical properties
of the mutated residues such as hydrophobicity, charge, polarity
and bulkiness. Protein structural information describes the structural
environment of the mutation and has been successfully used to
predict the protein stability change upon mutation (Capriotti et al.,
2004, 2005; Schymkowitz et al., 2005; Zhou and Zhou, 2002).
Some of the most important features for the prediction of the impact
of missense SNPs are derived from evolutionary analysis: critical
amino acids are often conserved in protein families and so changes
at conserved positions tend to be deleterious.

New algorithms that include knowledge-based information are
being developed (Alexiou et al., 2009; Calabrese et al., 2009;
Kaminker et al., 2007). Methods based on evolutionary information
for the prediction of mSNPs include SIFT (Ng and Henikoff, 2003)
and PolyPhen (Ramensky et al., 2002). SIFT scores the normalized
probabilities for all possible substitutions using a multiple sequence
alignment between homolog proteins, and PolyPhen predicts the
impact of mSNPs using different sequence-based features and a
position-specific independent counts (PSICs) matrix from multiple
sequence alignment. The PANTHER algorithm (Thomas et al.,
2003) uses a library of protein family hidden Markov models to
predict deleterious mutations. Recent work shows that 3D structural
features improve the prediction of disease-related mSNPs (Bao and
Cui, 2005; Karchin et al., 2005; Yue and Moult, 2006). Knowledge-
based information has been used to increase the accuracy of
prediction algorithms to over 80%. For example, SNPs&GO
(Calabrese et al., 2009) is an algorithm based on functional
information that takes in input log-odd scores calculated using Gene
Ontology (GO) annotation terms. MutPred (Li et al., 2009) evaluates
the probabilities of gain or loss of structure and function upon
mutations and predicts their impact using a Random Forest-based
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approach. Selected methods for the prediction of deleterious mSNPs
are listed in Supplementary Table S2 and more details about mSNP
predictors have been recently reviewed (Cline and Karchin, 2011;
Thusberg et al., 2011)

Prediction methods do not provide any information about the
pathophysiology of the diseases and so experimental tests are
required to validate genetic predictions. Laboratory validation is
expensive and time consuming and so there is a need for fast
and accurate methods for gene prioritization. Currently, the most
effective strategy uses the concept of similarity to genes that are
linked to the biological process of interest (guilt-by-association). The
input data for the available gene prioritization methods are derived
from functional annotation, protein–protein interaction (PPI) data,
biological pathways and literature.

The SUSPECT algorithm prioritizes genes by comparing
sequence features, gene expression data, Interpro domains and
functional terms (Adie et al., 2006). ToppGene combines mouse
phenotype data with human gene annotations and literature.
MedSim uses functional information from human disease genes
or proteins and their orthologs in mouse models (Schlicker et al.,
2010). ENDEAVOUR is trained on genes involved in a known
biological process and ranks candidate genes after considering
several genomic data sources (Tranchevent et al., 2008). G2D
prioritization strategy is based on a combination of data mining
on biomedical databases and sequence features (Perez-Iratxeta
et al., 2005). PolySearch analyzes biomedical databases to build
relationships between diseases, genes, mutations, drugs, pathways,
tissues, organs and metabolites in humans (Cheng et al., 2008).
MimMiner ranks phenotypes using text mining by comparing the
human phenome and disease phenotypes (van Driel et al., 2006).
PhenoPred detects gene–disease associations using the human PPI
network, known gene–disease associations, protein sequences and
protein functional information at the molecular level (Radivojac
et al., 2008). GeneMANIA (Andersen et al., 2008) generates
hypotheses about gene function, analyzing gene lists and prioritizing
genes for functional assays. The method takes in input genes from
six organisms and analyzes them using information from different
general and organism-specific functional genomics datasets. For
more details about gene prioritizing tools, a recently published
review (Tranchevent et al., 2010) and the Gene Prioritization Portal
provide comprehensive descriptions of available predictors.

The methods for the analysis of SNPs are mainly limited to
the prediction of the impact of missense SNPs. New methods are
needed to evaluate the impact of insertion, deletion and synonymous
SNPs. In addition, there is a need to detect functional regions in
the genome so that the effect of intronic SNPs can be analyzed,
such as those in promoter regions and splicing sites. For non-
coding regions, conservation across species is more difficult to
detect. Fortunately, with the fast growth of functionally annotated
genomes our ability to predict the impact of non-coding variants
will increase. For example, SNPs occurring in transcriptional motifs
can affect transcription factor binding, which suggests functional
consequences for variants in regulatory regions (Kasowski et al.,
2010). Recently, a method to identify possible genetic variations in
regulatory regions (is-rSNP) has been developed (Andersen et al.,
2008). Is-rSNP combines phylogenetic information and transcription
factor binding site prediction to identify variation in candidate cis-
regulatory elements. The detection of variants affecting splicing site
is also an important task. The Skippy algorithm (Woolfe et al.,

2010) analyzes the genomic region surrounding the variant to predict
severe effects on gene function through disruption of splicing.
A more exhaustive description of the methods for the prediction
of deleterious variants in non-coding has been recently published
(Cline and Karchin, 2011).

Last year, the first edition of the Critical Assessment of
Genome Interpretation (CAGI) was organized to assess the
available methods for predicting phenotypic impact of genomic
variation and to stimulate future research. In the first year of
CAGI (http://genomeinterpretation.org/), the organizers provided
six different sets of data for six different tasks. The majority of the
participating groups submitted predictions for just two classes of
experiments related to the detection of disease-related and function-
modifying variants. A few groups submitted predictions for the
other categories: evaluation of risky SNPs from GWAS studies,
interpretation of the Personal Genome Project data, prediction of
mutations to P53 function and the response of breast cancer cell lines
to different drugs. Several available predictors performed well for
disease and functional predictions and there were promising results
in the other categories. In the future, competitions such as CAGI
will improve the quality of the available prediction methods and
will renew the challenge for the understanding of genomic variation
data.

5 CHALLENGE 3: INTEGRATING SYSTEMS AND
DATA TO CAPTURE COMPLEXITY

Given the complex phenotypes involved in personalized medicine,
the simple ‘one-SNP, one-phenotype’ approach taken by most
studies is insufficient. Most medically relevant phenotypes are
thought to be the result of gene–gene and gene–environment
interactions (Manolio et al., 2009). For example, drug response
often depends on multiple pharmacokinetic and pharmacodynamic
interactions, which form a robust and tolerant system with highly
polymorphic enzymes and many interaction partners (Wilke et al.,
2005). As a result of this complexity, a drug–response phenotype
of interest is likely to depend on many genes and environmental
factors.

Basic GWAS approaches for pharmacogenomics have had some
success, including studies of warfarin that have linked the majority
of variation in response to just two genes, CYP2C9 and VKORC1
(Limdi and Veenstra, 2008). These and other studies of warfarin
have even led to an improved dosing algorithm with improvements
over the traditional clinical algorithm (International Warfarin
Pharmacogenetics Consortium et al., 2009). Clopidogrel response
has similarly been associated with variants of CYP2C19 (Shuldiner
et al., 2009).

Despite this success, there is debate over whether or not traditional
techniques will be successful for pharmacogenomics. There is
concern that pharmacogenomics GWAS themselves are susceptible
to many limitations: insufficient sample size, selection biases for
genetic variants, environmental interactions that may affect the
outcome measures and multiple gene–gene interactions that may
underlie unexplained effects (Motsinger-Reif et al., 2010). These
limitations become particularly difficult when researching rare
events such as the pharmacogentics of adverse events.

The methods for GWAS are designed for single marker
associations and are known to have limitations in explaining the
heritability of disease (Manolio et al., 2009). It is unlikely that
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these same methods will do any better with pharmacogenetics.
In fact, if these methods are parameterized for the multiple-marker
associations necessary for pharmacogenetics, then they will suffer
from the ‘curse of dimensionality’ and lose a significant amount
of statistical power (Bellman and Kalaba, 1959). For example,
to evaluate all combinations of two SNPs for 1 million SNPs
in a genome requires examining nearly 500 billion possibilities.
The challenge for bioinformatics is to address this complexity by
developing methods that combine multiple data sources without
losing statistical power.

Several groups have already tried to deal with this kind
of complexity in GWAS for disease (Motsinger et al., 2007).
Exhaustive search (Storey et al., 2005) and forward search
(Consortium et al., 2007) have both been applied; however, the
former can still lose statistical power and the later may miss some
associations. Model selection methods have been successful with
disease and trait GWAS studies by using selection techniques to
choose multifactorial models that balance the false positive rate,
statistical power and computational requirements of the search (Lee
et al., 2008; Wray et al., 2007; Wu and Zhao, 2009).

Given the size of the genomic datasets, dimensionality reduction
methods such as principal components analysis, information gain
and multifactor dimensionality reduction will be essential to make
complexity algorithms tractable (Hahn et al., 2003; Statnikov et al.,
2005; Yeung and Ruzzo, 2001). Some of these methods have proven
successful for finding multilocus associations with diseases such as
hypertension and familial amyloid polyneuropathy type I (Soares
et al., 2005; Williams et al., 2004). Many more feature selection
techniques for bioinformatics are classified and discussed in a recent
review (Saeys et al., 2007). These methods can be very effective
when dealing with large datasets; however, they do not integrate
with any external knowledge sources or inform the biology behind
the interactions.

Systems biology and network approaches address to the problem
of complexity by integrating molecular data at multiple levels
of biology including genomes, transcriptomes, metabolomes,
proteomes and functional and regulatory networks (Kohl et al.,
2010). We can view a disease or a drug–response phenotype as
a global perturbation of networks from their stable state (Auffray
et al., 2009). This approach integrates biological knowledge from
networks to make inferences about what genes or combinations
of genes and other biological markers are more likely to be
associated.

Combining disparate data sources can result in novel associations
and provide insight into gene–gene and gene–environment
interactions. One group created a disease–gene network by
combining the diseases and associated genes available in OMIM
(Goh et al., 2007). Analyzing this network showed that disease genes
are often non-essential and not necessarily hub genes. The same
group created a drug–target network and integrated that network
with a PPI network. The network shows that similar drugs cluster
together, palliative and etiological drugs show different topologies,
and newer and experimental drugs tend toward polypharmacology
(Yildirim et al., 2007). A global mapping of pharmacalogical space
can be made using chemical structure, disease indication and protein
sequence and can be used to make predictions of polypharmacology
(Paolini et al., 2006). Another suggestion is to integrate epigenetic
information to further our understanding of drug phenotypes (Zhang
and Dolan, 2009).

Pathway and gene set methods can also be applied to GWAS,
where a set of genes is identified that is suspected to be associated.
These methods are similar to Gene Set Enrichment Analysis (GSEA)
for microarray expression data (Subramanian et al., 2005). Usually
a standard statistical test is used to determine if a set of genes is
associated (Chasman, 2008; Wang et al., 2007; Yu et al., 2009), but
other more specialized metrics have been created. The SNP Ratio
Test compares the number of SNPs in a pathway to permuted sets,
and the Prioritizing Risk Pathways method combines pathway and
genetic data into a single metric (Chen et al., 2009; O’Dushlaine
et al., 2009).

Many groups hypothesize that the integrative approach of systems
biology will successfully link genomic measurements with clinical
applications (Atkinson and Lyster, 2010; Berg et al., 2010; Hopkins,
2007). Indeed, one group has integrated chemical similarity metrics,
pharmacogenomic interactions and PPI to predictive method for
pharmacogenes (Hansen et al., 2009). Another group has used
similarity of drug ligand sets to predict and validate novel ‘off-target’
interactions (Keiser et al., 2007).

These systems approaches are encouraging, but bioinformaticians
need to be careful of a few pitfalls as they proceed. Methods need
to be based on high-quality data to avoid the ‘garbage-in, garbage-
out’ phenomenon, especially when one incorrect assumption can
propagate through multiple data source and magnify the error.
For example, transferring annotations based on similarity works
sometimes, but could easily associate a paralog with an incorrect
function. Chemical similarity poses the same risk; two similar
molecules may behave very differently biochemically. Finally,
assumptions must also be examined carefully; for example, a method
that relates gene expression with drug targets must bear in mind that
most drugs bind proteins, not DNA or RNA.

6 CHALLENGE 4: MAKING IT ALL CLINICALLY
RELEVANT

The ultimate challenge for this research is to apply the results for
improved patient care. Much of this research has yet to be translated
to the clinic. In fact, many physicians are unprepared to incorporate
personal genetic testing into their practice and it is unclear how to
best apply research results to improve patient care (McGuire and
Burke, 2008). One of the areas where bioinformatics can have the
greatest clinical impact is in pharmacogenomics.

Most pharmaceutical development addresses medical problems
with a ‘one drug fits all’ approach. Genetic variation has been
shown to influence drug selection, dosing and adverse events
(Giacomini et al., 2007), and the therapeutic benefits of taking
a genetically tailored approach to drug development is now
recognized (Foot et al., 2010; Roses, 2004). One study found
that a hypothetical pharmacogenetically driven clinical trial of
the anticoagulant warfarin could save up to 60% of the cost and
reduce possible adverse events (Ohashi and Tanaka, 2010). There
are already many examples of drugs which have retrospectively
been found to have strong pharmacogenomic interactions, including
thiopurines for cancer (Weinshilboum, 2001) and the anticoagulant
clopiogrel (Shuldiner et al., 2009).

A trial for using rosiglitazone, an approved Type II diabetes
drug, for Alzheimer’s disease is an early example of prospective
application of pharmacogenomics. The hypothesis was that ApoE4
non-carriers would have a better response than ApoE4 carriers.
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The initial Phase II pharmacogenetic-based results appeared to
show that non-ApoE4 carriers showed improvement over placebo
(Roses, 2009). A later study of ApoE4-stratified patients showed no
significant benefits; however, the idea of prospective gene-based
stratification for drug trials still holds future promise (Gold et al.,
2010). Prospective gene-stratification hypotheses need to be
generated for future trials and will require new bioinformatics
methods (Roses, 2009). Since new drugs will not have any known
gene interactions, tools for predicting drug–target or drug–gene
interactions will be essential (Hansen et al., 2009; Keiser et al.,
2009).

Pharmacogenomics has already been successful in improving
drug prescription and dosing. Most prescriptions are written with
a ‘one dose fits all’ approach with adjustments based on gender,
weight, liver and kidney functions or allergies. Some drugs have
more laborious dosing calculations such as the anticoagulant
warfarin (Gage and Lesko, 2008; Wysowski et al., 2007). Warfarin
dosing is traditionally determined by a time-intensive ‘guess and
test’method, until the coagulation tests stabilize. Pharmacogenomics
identified several SNPs affecting dosing, includingCYP2C9 and
VKORC1 (Higashi et al., 2002; Rieder et al., 2005; Rost et al.,
2004). Similar studies have been applied to clopidogrel, tramadol,
anti-psychotics and many other drugs (Wilffert et al., 2011).
Ultimately, pharmacogenomic prescription and dosing algorithms
need to be accessible to physicians, like the new warfarin dosing
algorithms from the International Warfarin Pharmacogenomic
Consortium (IWPC) (International Warfarin Pharmacogenetics
Consortium et al., 2009). Moreover, the current state of medical
practice needs to be updated to include routine pharmacogenetic
testing, educating and training physicians in personalized medicine,
and further clinical trials to prove the efficacy of pharmacogenetic-
based prescriptions.

Bioinformatics also translates discoveries to the clinic by
disseminating discoveries through curated, searchable databases like
PharmGKB, dbGaP, PacDB and FDAAERS (Gamazon et al., 2010;
Mailman et al., 2007; Thorn et al., 2010). A major bottleneck for
these databases is manual curation of the data. Biologically and
medically focused text mining algorithms can speed the collection
of this structured data, such as methods that use sentence syntax
and natural language processing to derive drug–gene and gene–gene
interactions from scientific literature (Coulet et al., 2010; Garten
et al., 2010). These databases and methods need to be developed and
used carefully. All these data sources are susceptible to errors and
so validation of data is essential, especially before the information
is applied in the clinic.

Finally, there are challenges and opportunities for bioinformatics
to integrate with the electronic medical record (EMR) (Busis, 2010).
For example, the BioBank system at Vanderbilt links patient DNA
with a deidentified EMRs to provide a rich research database for
additional translational research in disease–gene and drug–gene
associations (Denny et al., 2010; Roden et al., 2008). Some health
care companies and HMOs have also begun to collect genetic
information from their patients. In order to even implement such
genome-based systems, the medical infrastructure will have to shift
from paper to electronic medical records, in order to be compatible
with bioinformatics portals for data delivery and interpretation.
Ultimately, bioinformatics needs to develop methods that interrogate
the genome in the clinic and allow physicians to use personalized
medicine in their daily practice.
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